Способы борьбы с коррозией

Все методы противокоррозионной защиты можно условно разделить на три группы по принципу их влияния на изменение хода коррозионного процесса:

  1. Изменение свойств металла.
  2. Изменение свойств среды.
  3. Изменение характера взаимодействия металла и среды на границе раздела.

К первой группе относятся следующие методы:

  • легирование металла,
  • термообработка,
  • поверхностная обработка (поверхностное легирование, ионная имплантация, аморфизация, и др.).

Ко второй группе относятся:

  • ингибирование среды,
  • обескислороживание водной среды,
  • осушение воздуха,
  • удаление агрессивных реагентов среды (соли, кислоты и т.п.).

К третьей группе относятся:

  • нанесение защитных покрытий изолирующих металл от агрессивной среды (лакокрасочные, металлические, оксидные, фосфатные, масла, смазки и т.п.),
  • катодная поляризация (катодная защита, нанесение анодных покрытий),
  • устранение анодной поляризации (защита от контактной коррозии, электродренаж, устранение блуждающих токов и пр.),
  • рациональное проектирование (устранение зазоров, правильный выбор металла для данной среды, устранение контактов разнородных металлов, устранение застойных зон и т.п.).

Основным средством защиты металлоконструкций от коррозии, а также основным средством декоративной отделки являются лакокрасочные покрытия.

Часто для эффективной защиты от коррозии используют комбинированные методы, сочетающие в себе несколько методов или способов защиты. Так-, для защиты подводной части судов целесообразно использовать лакокрасочные покрытия в сочетании с катод ной защитой. В этом случае повышается сохранность покрытия за счет исключения или уменьшения вспучивания пленки продуктами коррозии металла, и облегчается катодная поляризация корпуса вследствие увеличения поляризуемости окрашенного металла. Такие составы как холодное цинкование — так же объединяют в себе несколько типов защиты, которые увеличивают стойкость черных металлов к коррозии.

В случае защиты таких конструкций, как направляющие насадки гребных винтов, используются, как правило, четыре способа защиты: катодная защита, лакокрасочные покрытия, коррозионно-стойкие стали в зоне вращения винта, электрическое разъединение разнородных материалов.

Пластизоль автомобильный Пластигерм-974В для герметизации швов кузовов автомобилей и защиты днищ автомобилей от коррозии.

Пластизоль марки «Пластигерм ТМ 974 В» для днищ представляет собой однокомпонентную мастику, применяемую для защиты днищ, внутренних и наружных панелей кабин автомобилей. Предназначена для защиты днища и порогов пола кабин автомобильной техники. Отвержденный пластизоль эксплуатируется в атмосферных ус­ловиях под воздействием влаги, ультрафиолетового облучения, вибрации во всех климатиче­ских зонах в интервале температур от минус 45 °С до плюс 80 °С.

Условное обозначение марки пластизоля «Пластигерм ТМ 974 В» состоит из названия, зарегистрированного во ВНИИГПЭ под торговой маркой «Пластигерм ТМ «, и цифровых и буквенных обозначений : 974 В, где «97» — год создания материала, «4» — товарный индекс, «В» — характеризует виниловую природу основного полимерного связующего.

Основной способ нанесения — распыление.

Пример основных физико-механических свойств пластизоля марки «Пластигерм ТМ 974 В» для днищ, ТУ 2241-005-10699892-98.

Показатели по ТУ 2241-005-10699892-98 «Пластигерм ТМ 974 В» с изм. 1,2

Норма по ТУ

1

Внешний вид

Пастообразная масса без комков, сгустков и посторонних включений

2

Плотность, кг/м3

1,35 +/- 0,05

3

Сухой остаток, %, не менее

97

4

Вязкость по Брукфильду, RVT, 5 об/мин, Па с

70-150

5

Стекание

Не допускается сдвига нижней кромки

6

Прочность при растяжении, МПа, не менее

0,8

7

Относительное удлинение при разрыве, %, не менее

35

8

Адгезия

Адгезия выше прочности материала

Пластизоль марки «Пластигерм ТМ 974 В» для швов представляет собой однокомпонентную мастику, применяющуюся для герметизации внутренних и наружных сварных швов кабин автомобильной техники. Отвержденный пластизоль эксплуатируется в атмосферных ус­ловиях под воздействием влаги, ультрафиолетового облучения, вибрации во всех климатиче­ских зонах в интервале температур от минус 45 °С до плюс 80 °С.

Пример основных физико-механических свойств пластизоля марки «Пластигерм ТМ 974 В» для швов, ТУ 2241-005-10699892-98.

Показатели по ТУ 2241-005-10699892-98 «Пластигерм ТМ 974 В» с изм. 1,2

Норма по ТУ

1

Внешний вид

Пастообразная масса без комков, сгустков и посторонних включений

2

Плотность, кг/м3

<1,4

3

Сухой остаток, %, не менее

97

4

Вязкость по Брукфильду, RVT, 5 об/мин, Па с

80-140

5

Стекание

Не допускается сдвига нижней кромки

6

Прочность при растяжении, МПа, не менее

0,5

7

Относительное удлинение при разрыве, %, не менее

100

8

Адгезия

Адгезия выше прочности материала

В данной статье расскажем как появляется коррозия на автомобиле, как с ней бороться и дадим советы по удалению ржавчины на машине из личного опыта + видео удаления рыжиков с авто.

Почему автомобиль начинает ржаветь

Ржаветь способно только железо, которые окисляются после соединения металла с водой. Коррозия металла – электрохимический процесс, при котором с анода (его роль выполняет металлический кузов) эмиссируются электроны и через электролит (вода с незначительной примесью солей) попадают на катод (металлические части). В результате железо машины преобразуется в оксид железа – то есть ржавеет.

Если природа у «бытовой» коррозии электрохимическая, то любые сколы краски до металла — потенциальные места коррозионного поражения. Стоит там появиться электролиту в виде воды — и ржавление не заставит ждать.
Понимание процесса коррозии даёт инструменты для борьбы с ней. Т.к. кузов машины сделан из железа, то анод и катод найдутся всегда, а вот с электролитом мы должны что-то делать. Кстати, именно из-за большей насыщенности различными солями химических реагентов, которые используют коммунальные службы зимой, машина и начинает усиленно ржаветь в этот период.

Пути борьбы с коррозией

Человечество придумало барьерную защиту от коррозии, не допускающую физического контакта металла с внешней средой и протекторную. Барьерная защита — это краска и лак, всё что защищает поверхность от атмосферы.
Принцип протекторной защиты в другом: окисляться должен «жертвенный» металл — например, цинк, находящийся со сталью в непосредственном контакте. В результате электрохимической реакции корродирует цинк, а не железо. Подобное покрытие эффективно даже при наличии дефектов, а защита работает тем дольше, чем толще слой цинка. Все мы знаем о хорошей стойкости к коррозии оцинкованных кузовов, яркий пример — автомобили Ауди 100, которые даже через 30 лет находятся в хорошем состоянии.
Расскажем о пути борьбы с коррозией. Первый путь – пассивный. Необходимо покрыть металл кузова изолирующим покрытием – т.е. загрунтовать и покрасить. Этот процесс является эффективным способом предупреждения коррозии. Но необходимо постоянно следить за цельностью защитного покрытия, проверять на мелкие повреждения – трещины, удары и сколы на кузове.

  • Как защитить капот автомобиля от сколов своими руками

Также к этому пути относят мероприятия, связанные с чистотой машины – мойка (раз в две недели) и периодическая обработка воском – по нему вода быстрее стекает с покрытия.
Второй путь называется активным — основан на использовании различных покрытий на металл. Для этого применяются мастики, герметики и антикоррозионные материалы. В основном препараты используются на наиболее подверженных коррозии участках машины – днище, пороги, арки. Дополнительная защита эффективна, только если наносится на абсолютно чистые и сухие поверхности, иначе под пленкой защиты может остаться вода, которая продолжит процесс коррозии.

Третий путь – электрохимический. Используется реже из-за высокой стоимости и необходимости постоянного питания установленного электронного прибора. Благодаря изменению электродного потенциала, процессы коррозии в автомобиле начинают проходить только в определённом месте. Катодом является не кузов машины, а специальный электрод, который ржавеет вместо неё.
Все пути защиты автомобиля идеально взаимодополняют друг друга, но иногда случается промашка и процесс появления ржавчины появляется во всей буро-рыжей красе. Тут нужно действовать оперативно, т.к. запустить процесс коррозии просто, а избавиться гораздо сложнее.

Как удалить самому

Перво-наперво, нужно тщательно удалить ржавчину. Для этого используется слабый раствор щелочной кислоты, которым обрабатывается поврежденное место, а затем удаляется механически (шкуркой или металлическими щётками). Тщательно соблюдайте требование инструкции, т.к. кислота достаточно агрессивна и разъедает ржавчину изнутри. Этот процесс нужно вовремя остановить.
Также эффективны преобразователи или модификаторы ржавчины, которые в результате химической реакции преобразуют оксид железа в таннат железа и являются более стабильным веществом. Качественные модификаторы содержат полимеры и выступают в роли грунтовки. Минус — если оксид металла не обработается во всем объёме и останется, то процесс коррозии будет продолжаться.
В магазинах легко найти преобразователи ржавчины различных видов. Стоимость не высока. Процесс обработки прост: сначала зашкуриваем поврежденное место до чистого металла, затем наносим состав (можно кисточкой) и оставляем на выдержку до 12 часов в зависимости от инструкции. Не пугайтесь, когда очищенный участок станет зеленным цветом, — это работает модификатор ржавчины.

Видео. Удаляем рыжики с авто

Далее все стандартно – место, с которого удалили ржавчину (или преобразовали её) шпаклюется, грунтуется и красится. Действия повторяются при необходимости. Чтобы предотвратить появление ржавчины на авто в будущем, рекомендуется сделать антикоррозионную обработку.



Проведен краткий обзор основных методов защиты от коррозии, описаны их недостатки и преимущества. Рассмотрены метод плазменного электролитического оксидирования (ПЭО), как способ формирования антикоррозионных защитных покрытий, а также возможность создания антикоррозионных композиционных покрытий на основе базового ПЭО-слоя с последующим нанесением фторполимеров.

Введение

В настоящий момент оборудование и установки, применяемые в химической промышленности, испытывают на себе воздействие множества негативных факторов, которые в совокупности приводят к преждевременному выходу из строя данного оборудования, а так же влияют на товарные качества конечного продукта и возникновение внештатных и аварийных ситуаций.

Ущерб от воздействия агрессивных сред огромен и сопоставим с затратами на развитие крупнейших отраслей народного хозяйства. На данный момент ущерб вырос, так как увеличилось количество оборудования, работающего в агрессивных средах, а так же произошло устаревание действующего.

Одним из основных разрушающих факторов является коррозия металла, из которого состоят аппараты.

В трубопроводах и технологических средах установок предприятий химической промышленности основными коррозионными агентами являются хлористые соли, сероводород и соляная кислота . Соляная кислота образуется в результате гидролиза хлоридов магния и кальция при температурах от 120 °С до 350 °С, а также при термическом разложении хлорорганических соединений, происходящем наиболее интенсивно в интервале от 250 °С до 380 °С. Заметное выделение сероводорода в результате термического распада сернистых соединений начинается при температурах, превышающих 200 °С. Общее количество серы не характеризует непосредственно агрессивность технологических сред. Агрессивность технологических сред определяется присутствием и других коррозионных агентов, находящихся в агрессивной среде или образующихся в процессе ее переработки: кислорода, углекислого газа, элементарной серы, окислов серы, политионовых кислот, следов серной кислоты, нафтеновых кислот, окислов ванадия, а также введенными в избытке нейтрализующимися реагентами . Вызываемые ими формы коррозионных разрушений могут быть различными: общая или язвенная коррозия, питтинг, коррозионное растрескивание, избирательная коррозия, коррозия под осадком, газовая коррозия, коррозионная эрозия, щелевая коррозия и т.д. . Все это приводит к необходимости защиты оборудования от воздействия агрессивных сред, созданию новых и совершенствованию старых способов защиты.

етоды защиты от коррозии

На сегодняшний день основными методами защиты оборудования химической промышленности являются создание особых сплавов (коррозионностойких), а также различные косвенные методы, направленные на снижение негативного воздействия агрессивных сред. Большинство этих методов имеют ряд определенных недостатков, таких как высокая стоимость, низкая эффективность или способность защищать только от определенного фактора, а не от их совокупности.

Общий перечень средств противокоррозионной защиты включает:

‑ применение плёнкообразующих и нейтрализующих ингибиторов;

‑ применение коррозионностойких конструкционных материалов. Решения по их применению обычно принимаются на стадии замены по причине коррозии отдельных узлов и аппаратов;

‑ применение комплексных реагентов для защиты от коррозии, солеотложения и биообрастаний оборудования и трубопроводов со стороны охлаждающей оборотной воды;

‑ применение неметаллических материалов и лакокрасочных покрытий .

Применение ингибиторов является одним из наиболее эффективных и экономически целесообразных методов борьбы с коррозией. Эффективными ингибиторами коррозии являются органические соединения, содержащие азот и фосфор и обладающие способностью адсорбироваться на поверхности металла с образованием гидрофобного слоя, прочно связанного с поверхностью металла за счет химического взаимодействия с ним . В промышленности для снижения коррозионного воздействия наиболее распространены ингибиторы коррозии пленкообразующего типа, которые способны образовывать на защищаемой поверхности пленку из молекул, предотвращающих контакт металла с коррозионно-агрессивной средой. Органические ингибиторы коррозии адсорбируются только на поверхности металла. Продукты коррозии их не адсорбируют. Следовательно, данные ингибиторы применяют при кислотном травлении металлов для очистки последних от ржавчины, окалины, накипи. Органическими ингибиторами коррозии чаще всего бывают алифатические и ароматические соединения, имеющие в своем составе атомы азота, серы и кислорода. Наиболее распространенные недостатки органических ингибиторов коррозии – это повышенное содержание смол, которые в процессе эксплуатации оборудования оседают на внутренних поверхностях, ухудшая теплопередачу, а иногда и нарушая работу контрольно-измерительных приборов; а также вспенивание технологических жидкостей при очистке газа с помощью моноэтаноламина или осушке его диэтиленгликолем.

Легирование металлов является одним из методов изменения их структуры и свойств, а также защиты от износа и окисления . В производстве легирование металла применяется для перевода его из активного состояния в пассивное. В процессе легирования поверхность металла покрывается инертной пленкой с уникальными защитными характеристиками. С помощью легирования осуществляется защита металла от структурных коррозий всех типов. Использование обычных технологий легирования, оказывается неэкономичным из-за необходимости введения больших количеств дорогостоящих легирующих добавок.

Электрохимическая защита основана на зависимости скорости коррозии от электродного потенциала металла. Защиту с наложенным током применяют для протяженных конструкций, обычно в комбинации с изолирующими покрытиями, в средах, как с низким, так и с высоким электрическим сопротивлением. Преимущество этого способа защиты в легкости регулирования защитного тока и поддержании защитного потенциала даже в условиях изменения изолирующих свойств покрытия во времени. Однако существует вероятность того, что другая металлическая конструкция, расположенная вблизи защищаемой, может служить проводником и подвергаться усиленной коррозии.

Наиболее эффективная защита металла от коррозии и коррозионно-механического изнашивания может быть достигнута путем улучшения физико-химических и физико-механических свойств поверхности металла . Для противокоррозионной защиты трубопроводов и аппаратов химических заводов, кроме вышеописанных методов, применяют покрытия на полимерной и на металлической основе.

Защитные покрытия и материалы предохраняют металлические конструкции от воздействия агрессивных сред, регулируют подвод теплоты из вне к защищаемой поверхности, а также предохраняют от перегрева. Возможность применения того или иного покрытия зависит от необходимых эксплуатационных свойств.

Сущность защиты от коррозии металлическими покрытиями заключается в изоляции нестойкой в конкретной среде металлической поверхности тонким слоем более стойкого металла. Металлические покрытия могут быть нанесены электролитическим осаждением, химическим осаждением, горячим и холодным нанесением, термодиффузионной обработкой, металлизацией напылением, плакированием.

В настоящий момент более актуальным становится нанесение антикоррозионных неметаллических покрытий. Неметаллические покрытия подразделяют на неорганические и органические.

В качестве неорганических покрытий используют оксиды металлов, соединения хрома, фосфора, неорганические эмали, стекло и др. Эмалированию подвергаются черные и цветные металлы, которые используются в химической и других отраслях промышленности. Неорганические эмали по своему составу – силикаты. Основными недостатками таких покрытий являются хрупкость и растрескивание при тепловых и механических ударах .

К органическим защитным покрытиям относятся пластмассы, полимерные пленки, смолы, резины и лакокрасочные покрытия.

Плазменное электролитическое оксидирование, как метод создания защитных покрытий

В настоящий момент одним из наиболее перспективных способов защиты металлов от агрессивного воздействия окружающей среды является формирование защитных покрытий посредством метода плазменного электролитического оксидирования (ПЭО). Данный способ модификации поверхности позволяет получать на своей основе покрытия, обладающие целым рядом ценных свойств, одним из которых является высокая коррозионная стойкость.

Сущность метода заключается в том, что при пропускании тока через границу раздела металл-электролит при определенных условиях возникает высокая напряженность электрического поля (106–107 В/см), которая приводит к протеканию плазменных микрораздрядов на границе раздела электрод/электролит .

В результате действия плазменных микроразрядов формируется слой покрытия, состоящего из окисленных форм элементов металла основы и компонентов электролита. Метод ПЭО позволяет создавать гетерооксидные покрытия на металлах и сплавах с определенным составом, структурой, морфологией и обладающих практически важными характеристиками.

Особый интерес представляют собой композиционные покрытия (КП), сформированные на основе ПЭО-покрытия с применением фторполимеров. Базовый представитель класса фторполимеров – политетрафторэтилен (ПТФЭ) ‑ находит широкое применение во многих отраслях науки, промышленности и др.

Существует несколько способов получения КП, в основе которых находится ПТФЭ. Композиты на основе тетрафторэтилена могут быть получены из газофазных продуктов пиролиза ПТФЭ, растворения низкомолекулярных фракций ПТФЭ в сверхкритическом диоксиде углерода, технологией теломерных растворов тетрафторэтилена. Эти технологические приемы позволяют получить новые продукты, относимые к наноматериалам (ультрадисперсные порошки, теломерные растворы, покрытия, фторполимерные композиты с наноразмерными наполнителями), которые расширяют возможности практического применения фторполимеров .

В настоящее время разработан способ формирования защитных композиционных покрытий с использованием теломерного раствора тетрафторэтилена в ацетоне и последующей термической обработкой . Изучение влияния нанесения теломерного раствора на коррозионные свойства покрытия было проведено методом потенциодинамической поляризации.

Было обнаружено, что трехкратное нанесение теломерного раствора на исходное ПЭО-покрытие снижает значение плотности тока коррозии на 2 порядка по сравнению с ПЭО-покрытием и увеличивает поляризационное сопротивление на 4 порядка по сравнению с материалом без покрытия, также наблюдается облагораживание потенциала свободной коррозии.

Таким образом, внедрение полимера в поверхность, сформированную методом ПЭО, оказывает положительное влияние на коррозионные свойства полученных покрытий. Данные покрытия возможно использовать для защиты от агрессивных сред в различных отраслях промышленности.

Заключение

В настоящее время существует большое количество методов защиты от коррозии. Однако, несмотря на то, что в нашей стране накоплен большой опыт проведения мероприятий с целью определения скорости протекания коррозионных процессов и способов защиты от коррозии, и ведутся разработки в области специализированных материалов и технологий, обеспечивающих большую степень защиты от коррозии, на данный момент нет универсального метода борьбы с этой проблемой.

Одним из наиболее перспективных способов защиты металлов от коррозии является формирование композиционных покрытий, в основе которых лежат ПЭО-покрытия.

Для увеличения эффективности антикоррозийной защиты необходимо наносить полимер на предварительно сформированное покрытие с развитой поверхностью, в частности на слой, полученный методом плазменного электролитического оксидирования.

Литература:

Коррозия ежегодно приносит людям огромные убытки. Поэтому, как только человек начал использовать металлы, он сразу же приступил к поиску эффективных способов защиты от коррозии.

По своей сути все способы защиты от коррозии, применяемые сегодня, можно разделить на 3 вида:

Конструктивные способы – это защита коррозируемых металлов различными заслонами, защитными панелями, резиновыми прокладками, битумом или любыми другими не тонкослойными покрытиями.

Пассивные способы (барьерные) – это грунты, краски, лаки и эмали, покрытия создающие барьер, направленный на изоляцию поверхности металла от взаимодействия с окружающей средой.

Активные способы – заключаются в повышении электродного потенциала металла или использовании другого металла, более активного, который будет жертвовать свои электроды, разрушаться сам, тем самым защищая от ржавчины металлическое изделие. Сегодня самым удобным и эффективным способом является именно этот – применение жертвующего собой металла, а металл, который для этого предпочитается – цинк.

Плюсы и минусы способов защиты от коррозии

У конструктивных способов защиты от коррозии очень мало плюсов. Они сложны в применении, дорого обходятся, занимают много места, а иногда их просто невозможно использовать. Например, в качестве защиты от коррозии оборудования, кованых изделий, заборов, объектов городской инфраструктуры. Поэтому конструктивные методы сегодня применяются очень редко и только там, где они скрыты – для внутренних металлических конструкций зданий.

Пассивные способы защиты от коррозии обладают множеством плюсов, но и не лишены минусов.

  • Удобство нанесения
  • Низкая цена
  • Разнообразие цветов и видов
  • Создание барьера между поверхностью металла и окружающей средой
  • Недолговечность – 1-3 года при благоприятных условиях
  • Слабая стойкость к механическим повреждениям
  • Даже при небольшой царапине барьер нарушается, проявления окружающей среды проникают к поверхности металла и начинается процесс коррозии

Самый распространенный активный способ защиты от коррозии – цинкование. Так как защита с помощью цинка эффективнее и долговечнее всего защищает металлы от коррозии. Цинк коррозирует в 3 раза медленнее, чем большинство металлов, к тому же стоит намного дешевле, чем, к примеру, платина, которая так же почти не подвержена коррозии. Именно поэтому цинк – идеальный вариант в качестве защитного металла, жертвующего собой ради защиты от коррозии других металлов.

  • Долговечность – защищает до 25-50 лет
  • Высокая стойкость к механическим повреждениям, агрессивной среде, воде и прочим воздействиям
  • Даже при нарушении целостности слоя продолжает защищать от коррозии
  • Позволяет добавлять слои и увеличивать срок защиты в процессе эксплуатации
  • Требуется тщательная подготовка поверхности и четкое соблюдение технологического процесса

Важно! Однако для того, чтобы цинк работал как следует и защищал металлы от коррозии на срок более 25 лет, недостаточно просто добавить его в краску. Необходимо соблюдение нескольких условий:

  • Содержание цинка в сухой пленке покрытия более 95%.
  • Наличие связующего вещества и нейтральных смол, которые помогают частицам цинка активно взаимодействовать между собой и жертвовать электроны на борьбу с коррозией.
  • Размер частиц цинка 12–15 мкм и их чистота от 98%.

Если все вышеуказанные условия соблюдаются, то цинковое покрытие защищает сразу двумя способами: пассивным и активным. То есть, одновременно создает прочный барьер между поверхностью металла и окружающей средой, а если барьер поврежден, то жертвует коррозии свои электроны до тех пор, пока покрытие полностью не истощится.

Только в этом случае полученный состав является цинкованием и может наноситься в качестве защитного покрытия на другие металлы различными способами. Способов нанесения цинкования несколько: горячее цинкование, холодное, гальваническое, газо-термическое, термодиффузионное. Подробнее о различных видах цинкования, их плюсах и минусах вы можете прочитать в статье: Виды цинкования металлов.

Сравнение самых популярных способов защиты от коррозии

Характеристики Холодное цинкование
(Барьер-цинк)
Горячее цинкование Краска
Активная катодная защита + +
Легкое применение на месте + +
Многократное нанесение + +
Возможно финишное покрытие + ± +
Нанесение в экстремальных условиях (высокая влажность и низкая температура) +
Неограниченный срок хранения +
Контакт с питьевой водой + +
Температурная и механическая устойчивость + +
Сварка по покрытию + ±
Восстановление покрытия +
Нанесение при отрицательных температурах (-35) +

Если сравнить самые популярные сегодня способы защиты от коррозии, то очевидно, что холодное цинкование имеет больше преимуществ. Обработка методом холодного цинкования позволит вам сэкономить, увеличить стоимость ваших конструкций, а значит и ваши доходы, сделать изделия привлекательнее для ваших покупателей. Холодное цинкование позволит вам гордиться произведенной продукцией и не волноваться за ее качество, ведь после нанесения можно просто забыть о коррозии на срок до 25 и более лет.

Есть вопросы по выбору состава? Обращайтесь в представительство в вашем городе:

Материалы из металлов под химическим или электрохимическим воздействием окружающей среды подвергаются разрушению, которое называется коррозией. Коррозия металлов вызывается окислительно-восстановительными реакциями, в результате которых металлы переходят в окисленную форму и теряют свои свойства, что приводит в негодность металлические материалы.

Можно выделить 3 признака, характеризующих коррозию:

  • Коррозия – это с химической точки зрения процесс окислительно-восстановительный.
  • Коррозия – это самопроизвольный процесс, возникающий по причине неустойчивости термодинамической системы металл – компоненты окружающей среды.
  • Коррозия – это процесс, который развивается в основном на поверхности металла. Однако, не исключено, что коррозия может проникнуть и вглубь металла.

Виды коррозии металлов

Наиболее часто встречаются следующие виды коррозии металлов:

  1. Равномерная – охватывает всю поверхность равномерно
  2. Неравномерная
  3. Избирательная
  4. Местная пятнами – корродируют отдельные участки поверхности
  5. Язвенная (или питтинг)
  6. Точечная
  7. Межкристаллитная – распространяется вдоль границ кристалла металла
  8. Растрескивающая
  9. Подповерхностная

Основные виды коррозии

С точки зрения механизма коррозионного процесса можно выделить два основных типа коррозии: химическую и электрохимическую.

Химическая коррозия металлов

Химическая коррозия металлов — это результат протекания таких химических реакций, в которых после разрушения металлической связи, атомы металла и атомы, входящие в состав окислителей, образуют химическую связь. Электрический ток между отдельными участками поверхности металла в этом случае не возникает. Такой тип коррозии присущ средам, которые не способны проводить электрический ток – это газы, жидкие неэлектролиты.

Химическая коррозия металлов бывает газовой и жидкостной.

Газовая коррозия металлов – это результат действия агрессивных газовых или паровых сред на металл при высоких температурах, при отсутствии конденсации влаги на поверхности металла. Это, например, кислород, диоксид серы, сероводород, пары воды, галогены. Такая коррозия в одних случаях может привести к полному разрушению металла (если металл активный), а в других случаях на его поверхности может образоваться защитная пленка (например, алюминий, хром, цирконий).

Жидкостная коррозия металлов– может протекать в таких неэлектролитах, как нефть, смазочные масла, керосин и др. Этот тип коррозии при наличии даже небольшого количества влаги, может легко приобрести электрохимический характер.

При химической коррозии скорость разрушения металла пропорциональна скорости химической реакции и той скорости с которой окислитель проникает сквозь пленку оксида металла, покрывающую его поверхность. Оксидные пленки металлов могут проявлять или не проявлять защитные свойства, что определяется сплошностью.

Сплошность такой пленки оценивают величине фактора Пиллинга—Бэдвордса: (α = Vок/VМе) по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла

где Vок — объем образовавшегося оксида

VМе — объем металла, израсходованный на образование оксида

Мок – молярная масса образовавшегося оксида

ρМе – плотность металла

n – число атомов металла

AMe — атомная масса металла

ρок — плотность образовавшегося оксида

Оксидные пленки, у которых α 2,5 условие сплошности уже не соблюдается, вследствие чего такие пленки не защищают металл от разрушения.

Ниже представлены значения α для некоторых оксидов металлов

Электрохимическая коррозия металлов

Электрохимическая коррозия металлов – это процесс разрушения металлов в среде различных электролитов, который сопровождается возникновением внутри системы электрического тока.

При таком типе коррозии атом удаляется из кристаллической решетки результате двух сопряженных процессов:

  • Анодного – металл в виде ионов переходит в раствор.
  • Катодного – образовавшиеся при анодном процессе электроны, связываются деполяризатором (вещество — окислитель).

Сам процесс отвода электронов с катодных участков называется деполяризацией, а вещества способствующие отводу – деполяризаторами.

Наибольшее распространение имеет коррозия металлов с водородной и кислородной деполяризацией.

Водородная деполяризация осуществляется на катоде при электрохимической коррозии в кислой среде

2H + +2e — = H2 разряд водородных ионов

Кислородная деполяризация осуществляется на катоде при электрохимической коррозии в нейтральной среде

O2 + 4H + +4e — = H2O восстановление растворенного кислорода

Все металлы, по их отношению к электрохимической коррозии, можно разбить на 4 группы, которые определяются величинами их стандартных электродных потенциалов:

  1. Активные металлы (высокая термодинамическая нестабильность) – это все металлы, находящиеся в интервале щелочные металлы — кадмий (Е 0 = -0,4 В). Их коррозия возможна даже в нейтральных водных средах, в которых отсутствуют кислород или другие окислители.
  2. Металлы средней активности (термодинамическая нестабильность) – располагаются между кадмием и водородом (Е 0 = 0,0 В). В нейтральных средах, в отсутствии кислорода, не корродируют, но подвергаются коррозии в кислых средах.
  3. Малоактивные металлы (промежуточная термодинамическая стабильность) – находятся между водородом и родием (Е 0 = +0,8 В). Они устойчивы к коррозии в нейтральных и кислых средах, в которых отсутствует кислород или другие окислители.
  4. Благородные металлы (высокая термодинамическая стабильность) – золото, платина, иридий, палладий. Могут подвергаться коррозии лишь в кислых средах при наличии в них сильных окислителей.

Электрохимическая коррозия может протекать в различных средах. В зависимости от характера среды выделяют следующие виды электрохимической коррозии:

  • Коррозия в растворах электролитов — в растворах кислот, оснований, солей, в природной воде.
  • Атмосферная коррозия – в атмосферных условиях и в среде любого влажного газа. Это самый распространенный вид коррозии.

Например, при взаимодействии железа с компонентами окружающей среды, некоторые его участки служат анодом, где происходит окисление железа, а другие – катодом, где происходит восстановление кислорода:

А: Fe – 2e — = Fe 2+

Катодом является та поверхность, где больше приток кислорода.

  • Почвенная коррозия – в зависимости от состава почв, а также ее аэрации, коррозия может протекать более или менее интенсивно. Кислые почвы наиболее агрессивны, а песчаные – наименее.
  • Аэрационная коррозия — возникает при неравномерном доступе воздуха к различным частям материала.
  • Морская коррозия – протекает в морской воде, в связи с наличием в ней растворенных солей, газов и органических веществ.
  • Биокоррозия – возникает в результате жизнедеятельности бактерий и других организмов, вырабатывающих такие газы как CO2, H2S и др., способствующие коррозии металла.
  • Электрокоррозия – происходит под действием блуждающих токов на подземных сооружениях, в результате работ электрических железных дорог, трамвайных линий и других агрегатов.

Методы защиты от коррозии металла

Основной способ защиты от коррозии металла – это создание защитных покрытий – металлических, неметаллических или химических.

Металлические покрытия.

Металлическое покрытие наносится на металл, который нужно защитить от коррозии, слоем другого металла, устойчивого к коррозии в тех же условиях. Если металлическое покрытие изготовлено из металла с более отрицательным потенциалом (более активный) , чем защищаемый, то оно называется анодным покрытием. Если металлическое покрытие изготовлено из металла с более положительным потенциалом (менее активный), чем защищаемый, то оно называется катодным покрытием.

Например, при нанесении слоя цинка на железо, при нарушении целостности покрытия, цинк выступает в качестве анода и будет разрушаться, а железо защищено до тех пор, пока не израсходуется весь цинк. Цинковое покрытие является в данном случае анодным.

Катодным покрытием для защиты железа, может, например, быть медь или никель. При нарушении целостности такого покрытия, разрушается защищаемый металл.

Неметаллические покрытия.

Такие покрытия могут быть неорганические (цементный раствор, стекловидная масса) и органические (высокомолекулярные соединения, лаки, краски, битум).

Химические покрытия.

В этом случае защищаемый металл подвергают химической обработке с целью образования на поверхности пленки его соединения, устойчивой к коррозии. Сюда относятся:

оксидирование – получение устойчивых оксидных пленок (Al2O3, ZnO и др.);

азотирование – поверхность металла (стали) насыщают азотом;

воронение стали – поверхность металла взаимодействует с органическими веществами;

цементация – получение на поверхности металла его соединения с углеродом.

Изменение состава технического металла также способствует повышению стойкости металла к коррозии. В этом случае в металл вводят такие соединения, которые увеличивают его коррозионную стойкость.

Изменение состава коррозионной среды (введение ингибиторов коррозии или удаление примесей из окружающей среды) тоже является средством защиты металла от коррозии.

Электрохимическая защита основывается на присоединении защищаемого сооружения катоду внешнего источника постоянного тока, в результате чего оно становится катодом. Анодом служит металлический лом, который разрушаясь, защищает сооружение от коррозии.

Протекторная защита – один из видов электрохимической защиты – заключается в следующем.

К защищаемому сооружению присоединяют пластины более активного металла, который называется протектором. Протектор – металл с более отрицательным потенциалом – является анодом, а защищаемое сооружение – катодом. Соединение протектора и защищаемого сооружения проводником тока, приводит к разрушению протектора.

Коррозия металлов, как с ней бороться?

Антикоррозийная краска по металлу / по ржавчине — Хамертон 3/1 (МОЛОТКОВАЯ,ГЛАДКАЯ, МЕТАЛЛИЧЕСКАЯ)

На всех металлических изделиях вследствие агрессивного природного воздействия со временем образуется ржавчина.

Ржавление – это частный случай коррозий металла, окисление железа под действием кислорода воздуха, влаги и угелекислого газа, сопровождающееся образованием на поверхности металла слоя ржавчины, состоящей главным образом из водной окиси железа.

Коррозия металлов — это разрушение металлов в следствии химического или электрохимического взаимодействия с внешней (коррозийной) средой.

Как с ней бороться?

Борьба с коррозией проводится методами защиты, разработанными на основе хорошо известных научных принципов, однако она остается одной из самых серьезных и сложных задач современной техники. Чтобы представить, какое значение имеет борьба с коррозией металлов, рассмотрим, какой вред она приносит. Из-за коррозии ежегодно теряется около 20% общего количества металлов и огромные средства тратятся на их защиту.

Прямой ущерб от коррозии металлов связан с порчей и выходом из строя всевозможных машин, приборов, металлических конструкций, которые являются более ценными, чем сам металл, пошедший на их изготовление. Коррозия некоторых важных деталей, например поршней автомобильного двигателя, кузова, шасси, делает автомобиль непригодным для его эксплуатации. Металл автомобиля сохранился, но автомобиль в результате коррозионного разрушения отдельных его деталей потерял свое назначение. Необходимость замены водопроводных и канализационных труб, разрушенных коррозией, связана с расходом не только по замене старых труб новыми, но также и с затратами большого труда на извлечение из почвы старых и закладку новых труб.

Коррозия иногда приводит и к тяжелым последствиям. Так, например, в котельных установках, когда не приняты достаточные меры защиты металла от коррозии, происходят взрывы котлов.

Даже такой незначительный вид коррозии, как потускнение зеркальных поверхностей, приводит к замене сложных сооружений, например прожекторов, новыми или к очень значительному их ремонту, требующему больших затрат. Пожалуй, трудно перечислить громадный ущерб, который связан с коррозионными разрушениями металлических изделий.

Короззионную стойкость материалов можно повысить, если нанести на них защитные покрытия. Для защиты от атмосферной коррозии, в настоящее время получила самое широкое применение антикоррозийная краска по металлу Хаммертон 3 в 1 , в состав которой входят ингибиторы коррозии, грунт и краска.

DR.Ferro Hammertone/ Хаммертон 3/1- это уникальный продукт, который позволит отказаться от ряда трудоёмких и дорогостоящих работ и значительно удешевит и упростит всю технологию нанесения антикоррозийного покрытия . Уже сегодня, антикоррозийная краска Хамертон 3/1 успешно используется при ремонтно-восстановительных работах, а также в целях декорации.

В отличие от традиционных методов окрашивания эта краска не требует тщательной зачистки окрашиваемой поверхности, достаточно удалить рыхлую ржавчину и жирные пятна , если они есть . Краска Хамертон получила известность именно благодаря этому свойству, а также тому, что после нанесения материал держится длительное время. Кроме того, у краски Хамертон отличная адгезия с металлом, подобный эффект достигается путем добавления алкидных смол и стирола. Растворители, входящие в состав краски Хаммертон , достаточно быстро испаряются и поэтому окрашиваемое изделие хорошо и быстро сохнет. А за счёт специальных силиконовых компонентов, также включенных в состав краски Hammertone, последняя характеризуется хорошим водоотталкивающими свойствами, что также немаловажно, особенно если работать предстоит с объектами, стоящими под открытым небом.

Краска Хамертон, как уже отмечалось выше, была разработана специально для ее нанесения поверх ржавчины. Благодаря такому свойству можно достаточно быстро отреставрировать старые металлические изделия даже, если они были до этого неоднократно окрашены.

В целях декорации ее можно наносить и на дерево, если оно до этого предварительно было покрыто акриловым грунтом. Без слоя грунтовки древесину лучше не окрашивать .Её также можно использовать для обработки пластиковых поверхностей. Однако в этом случае можно использовать далеко не все виды пластика, а только те, которые будут сочетаться с растворителем.

Основные характеристики краски Хамертон

1. Высокое сопротивлением к коррозии металлов, Гарантия минимум на 7 лет.

3. Быстро сохнет — 20-30 минут

4. Обладает грязеотталкивающим свойством.

5. Допускаются плохо подготовленные металлические поверхности (удаляется только рыхлая ржавчина)

6. Термостойкая – выдерживает температуру до 150С

7. экономичный расход: 1 литром краски можно покрыть 12 кв/м

Вся продукция фабрики CST Kimya San. Ve Tic. A.C. соответствуют международным требованиям к качеству ISO-9001QMS, ISO-14001 EMS , характеризуются долговечностью, устойчивостью к атмосферному воздействию, обладают высокими декоративными и защитными свойствами.

По всем интересующим Вас вопросам c нами можно связаться — тел. в Москве 772-01-69

Заявки с карточкой клиента присылайте на эл. адрес-

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *