Сила тяги автомобиля

Сила тяги: определение

Определение 1

Силой тяги называют силу, прикладываемую к телу для поддержании его в постоянном движении.

Прекращение действия силы тяги приводит к остановке вследствие трения, вязкости окружающей среды и других противодействующих движению сил.

Тело, на которое не действуют силы, движется с постоянной скоростью $v = const$ (первый закон Ньютона). Частным случаем такого движения является состояние покоя ($v = 0$). Движение с постоянной скоростью называют состоянием инерции. Чтобы вывести тело из такого состояния, нужно приложить к нему силу. Скорость тела в этом случае изменится, т.е. оно получит ускорение (либо замедление, которое можно считать отрицательным ускорением).

Величина ускорения обратнопропорциональна массе тела (чем оно массивнее, тем труднее его вывести из состояния инерции) и прямопропорциональна интенсивности приложенной силы. Таким образом:

$F = m \cdot a$,

где:

  • $F$ — сила,
  • $m$ — масса,
  • $a$ — ускорение.

Замечание 1

Эта формула отражает Второй закон Ньютона.

Готовые работы на аналогичную тему

  • Курсовая работа Сила тяги 490 руб.
  • Реферат Сила тяги 240 руб.
  • Контрольная работа Сила тяги 220 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Формулы для расчета

В качестве примера силы тяги, выводящей тело из состояния покоя, можно рассмотреть спортсмена, поднимающего штангу. В исходном состоянии штанга находится в состоянии инерции (остается неподвижной). Когда спортсмен отрывает ее от земли, его мышцы должны сокращаться с такой силой, чтобы она превысила вес штанги, т.е. силу, с которой ее притягивает гравитационное поле Земли. Если штангисту удастся оторвать штангу от пола — значит она переместится вверх на некоторое расстояние, т.е. получит ускорение. Т.е. силой тяги, двигающей данный снаряд, является сила сокращающихся мышц спортсмена. При этом должно соблюдаться условие:

$F_м$ > $F_т$, т.е. $F_м$ >$ m \cdot g$,

где $F_м$ — сила мышц (в данном случае сила тяги), $F_т$ — сила тяжести (гравитация), $m$ — масса, $g$ — ускорение свободного падения.

Состояние движения по инерции следует отличать от равномерного движения, когда сила тяги уравновешивается противодействующими силами. Например, при движении автомобиля работающий двигатель через систему трансмиссии передает на колеса силу, преодолевающую силы трения внутри механизмов автомобиля, трения колес о поверхность дороги, сопротивления воздуха и т.д. Силу тяги можно в этом случае вычислить зная время разгона $t$ до нужной скорости $v$ и массу автомобиля $m$:

$F = m \cdot \frac{v}{t}$

Здесь ускорение выражено как частное от деления скорости на время разгона.

Силу тяги можно также выразить через мощность — способность некоторого источника энергии совершать работу. Чем мощность выше — тем за меньшее время этот источник разовьет силу, способную разогнать тело массой $m$ до требуемой скорости $v$. Работа же прямопропорциональна силе, которая ее совершила:

$A = F \cdot s$,

где $s$ — расстояние, на которое сила переместила данное тело.

Поскольку расстояние можно выразить через скорость и время,

$s = v \cdot t$,

а мощность есть работа, выполняемая в единицу времени

$N = \frac{A}{t}$

можно составить уравнения:

$\frac{A}{t} = \frac{F \cdot v \cdot t}{t} \implies N = F \cdot v \implies F = \frac{N}{v}$

Пример 1

Рассмотрим силу тяги как сумму двух сил:

Подставив числовые значения в формулу

В машиностроении термин » тяговое усилие» может относиться либо к общему сцеплению транспортного средства с поверхностью, либо к величине общего тягового усилия, параллельному направлению движения .

В железнодорожном машиностроении термин тяговое усилие часто используется как синоним тягового усилия для описания тягового усилия локомотива . В автомобилестроении используются различные термины: тяговое усилие обычно превышает тяговое усилие на величину имеющегося сопротивления качению , и оба показателя выше, чем величина тягового усилия дышла на общее имеющееся сопротивление (включая сопротивление воздуха и уклон ). Опубликованное значение тягового усилия для любого транспортного средства может быть теоретическим, то есть рассчитанным на основе известных или подразумеваемых механических свойств, или полученным путем испытаний в контролируемых условиях. Обсуждение здесь охватывает использование этого термина в механических приложениях, в которых конечной ступенью системы передачи энергии является одно или несколько колес, находящихся в фрикционном контакте с проезжей частью или железнодорожным полотном .

Выбирая лебедку тяговую, часто необходимо узнать значение тягового усилия для выполнения конкретной задачи. При вертикальном поднятии груза это легко — тяга должна быть больше веса груза. При движении груза с трением и уклоном расчет будет сложней. В этом случае надо использовать формулу P=Wsinα+μWcosα.

Где: P – Тяговое усилие (кгс); W- Масса груза (кг); µ — коэффициент трения;α-угол уклона

Коэффициент трения:

Металл по металлу ( кроме пары сталь/сталь) 0,15-0,20
Дерево по металлу 0,20-0,50
Металл по металлу при смазке 0,07-0,1
Бронза по чугуну 0,16
Бронза по стали 0,19
Дуб по стали 0,62
Дерево по льду 0,035
Дуб вдоль волокон — дуб вдоль волокон 0,62
Дуб поперек волокон-дуб поперек волокон 0,54
Дуб-кожа 0,47
Камень-дерево 0,46
Камень-камень 0,5
Железо по льду 0,020
Сталь заточенная по льду (коньки) 0,015
Лед по льду 0,028
Резина по пластику 0,2
Сталь по стали 0,03-0,09
Шина по сухому асфальту 0,50-0,75
Шина по влажному асфальту (до аквапланирования) 0,35-0,45
Шина по сухой грунтовой или гравийной дороге 0,40-0,50
Шина по заснеженной дороге 0,52
Шина по влажной грунтовой или гравийной дороге (до аквапланирования) 0,30-0,40
Шина по гладкому льду 0,15-0,25
Точильный камень по стали 0,94
Подшипник скольжения смазанный 0,02-0,08
Стальное колесо по рельсу 0,01

Определение и формула силы тяги

Определение

Исходя из формулы (1) силу тяги можно определить через полезную мощность, и скорость транспортного средства (v):

Для автомобиля, поднимающегося в горку, которая имеет уклон , масса автомобиля m сила тяги (FT) войдет в уравнение:

где a – ускорение, с которым движется автомобиль.

Основной единицей измерения силы в системе СИ является: =Н

В СГС: =дин

Пример

Задание. На автомобиль имеющий массу 1 т при его движении по горизонтальной поверхности, действует сила трения, которая равна =0,1 от силы тяжести. Какой будет сила тяги, если автомобиль движется с ускорением 2 м/с?

Решение. Сделаем рисунок.

В качестве основы для решения задачи используем второй закон Ньютона:

Спроектируем уравнение (1.1) на оси X и Y:

По условию задачи:

Подставим правую часть выражения (1.4) вместо силы трения в (1.2), получим:

Переведем массу в систему СИ m=1т=103 кг, проведем вычисления:

Ответ. FT=2,98 кН

Пример

Задание. На гладкой горизонтальной поверхности лежит доска массой M. На доске находится тело массы m. Коэффициент трения тела о доску равен . К доске приложена сила горизонтальная сила тяги, которая зависит от времени как: F=At (где A=const). В какой момент времени доска начнет выскальзывать из-под тела?

Решение. Сделаем рисунок.

Для решения задачи нам потребуются проекции сил на осиX и Y, которые отличны от нуля. Для тела массы m:

Для тела массы M:

Обозначим момент времени, в который доска начнет выскальзывать из-под тела t0, тогда

Ответ.

Читать дальше: Формула силы упругости.

Вы поняли, как решать? Нет?

Помощь с решением

Монография «ТЯГОВЫЕ РАСЧЕТЫ»

3. СИЛЫ, ДЕЙСТВУЮЩИЕ НА ПОЕЗД

3.2. Сила тяги

3.2. СИЛА ТЯГИ

3.2.1. КЛАССИФИКАЦИЯ СИЛ ТЯГИ

Сила тяги – управляемая внешняя сила, создаваемая двигателем локомотива во взаимодействии с рельсами и приложенная к движущим колесам локомотива в направлении его движения.

Любой локомотив можно рассматривать как преобразователь энергии во внешнюю работу силы тяги, причем в зависимости от его вида может иметь место несколько стадий преобразования и соответственно несколько преобразователей энергии.

Электрическая энергия, необходимая для питания электровозов, вырабатывается на стационарных электрических станциях и, после преобразования ее на подстанциях, подается по питающим проводам (фидерам) в контактную сеть. Из сети через токоприемник (пантограф) и различные электромагнитные устройства (электрические аппараты, полупроводниковые приборы и т.д.) электроэнергия поступает в тяговые электродвигатели. В электродвигателях электрическая энергия трансформируется во внутреннюю механическую работу вращения якорей (роторов) и зубчатых передач движущих колес. Затем эта внутренняя механическая работа в экипаже за счет сцепления колес с рельсами преобразуется во внешнюю механическую работу на ободе движущих колес, которая расходуется на передвижение электровоза.

В тепловозе источником энергии является подводимое к нему топливо. В двигателе внутреннего сгорания (дизеле) термохимическая энергия топлива превращается непосредственно во внутреннюю механическую работу на валу двигателя, которая затем при помощи передаточного механизма (электрического, гидромеханического, механического или какого-либо иного) трансформируется во внутреннюю работу вращения движущих колес и далее, как и в электровозе, преобразуется во внешнюю механическую работу на ободе движущих колес.

В паровозе, так же как и в тепловозе, источником энергии является топливо, забрасываемое периодически в топку. В паровозном котле термохимическая энергия топлива преобразуется в потенциальную энергию сжатого пара. Эта последняя в машине паровоза (в его паровых цилиндрах) превращается во внутреннюю механическую работу, которая при помощи шатунно-кривошипного механизма затрачивается на вращение движущих колес, и далее преобразуется во внешнюю механическую работу на ободе движущих колес.

Таким образом, во всех локомотивах существуют различные преобразователи энергии, причем, каждый из них может переработать определенное количество энергии. Наиболее совершенным является такой локомотив, все трансформаторы энергии которого имеют примерно одинаковую мощность, т.е. могут преобразовать одинаковое количество энергии; в противном случае меньший по мощности трансформатор энергии является ограничивающим. Например, сильно развитый котел паровоза по сравнению с мощностью паровой машины при достаточном сцепном весе не может быть признан целесообразным, ибо возможная паропроизводительность котла не будет полностью использована; следовательно, машина в данном случае ограничивает мощность такого паровоза. Напротив, если паровоз имеет недостаточно развитый котел, то мощность паровой машины и сцепной вес паровоза окажутся неиспользованными полностью, и котел будет ограничивать мощность паровоза.

В зависимости от стадий преобразования энергии, имеющих место в различных видах локомотивов, для них установлены следующие понятия о силе тяги.

В электровозах:

1) сила тяги по тяговым электродвигателям, соответствующая развиваемой этими двигателями мощности;

2) сила тяги по сцепному весу, или сила тяги по сцеплению.

Для электровозов не имеется ограничения силы тяги по генератору энергии, т.к. мощность электростанций позволяет снабжать электродвигатели энергией практически без ограничений.

В тепловозах:

1) сила тяги по дизелю;

2) сила тяги по передаточному механизму (передаче);

3) сила тяги по сцеплению.

В паровозах:

1) сила тяги по котлу, под которой подразумевается сила тяги при условии, что машина паровоза расходует в час определенное постоянное количество пара;

2) сила тяги по машине;

3) сила тяги по сцеплению.

Необходимо отметить, что для всех локомотивов наименьшая по своему значению сила тяги ограничивает использование мощности локомотива в целом. Поэтому очень важно в эксплуатации установить возможный максимум для силы тяги по каждому из указанных выше признаков, что обычно производится для каждого вида локомотива в виде соответствующих расчетных норм, помещаемых в ПТР.

Кроме указанной классификации, силу тяги локомотивов различают также по месту ее приложения:

1) индикаторная сила тяги Fi;

2) касательная сила тяги (действительная сила тяги, сила тяги на ободе движущих колес) Fк;

3) сила тяги на сцепке (полезная сила тяги) Fп;

4) динамометрическая сила тяги Fд.

Индикаторной силой тяги называется сила тяги, определяемая из условия, что ее работа за один оборот движущих колес равна механической работе за тот же оборот на валах тяговых двигателей электровоза, или полной работе (без потерь) газа в цилиндрах дизеля тепловоза, или пара в цилиндрах паровой машины паровоза.

Индикаторной она названа потому, что работа газа или пара в цилиндрах измеряется при помощи индикатора. Применительно к электровозу понятием об индикаторной силе тяги не пользуются, а его заменяют понятием электромагнитная сила тяги Fэм.

Действительным местом приложения индикаторной силы тяги являются для электровоза валы электродвигателей, для тепловоза и паровоза — поршни их двигателей. В теории тяги точка приложения индикаторной силы искусственно переносится с действительного места ее приложения на обод движущих колес. При этом предполагается, что такой перенос совершается без всяких потерь, которые неизбежно имеют место в передаточных механизмах всех видов локомотивов: в электровозах — в зубчатой передаче, в тепловозах — в электрической, гидравлической или механической передаче, и в паровозах — в шатунно-кривошипном механизме. Таким образом, при производстве расчетов по индикаторной силе тяги в полное сопротивление поезда должно входить сопротивление локомотива как машины в тяговом режиме.

Касательная сила тяги — сила, приложенная к центрам осей движущих колес или к ободу движущих колес и определяемая из условия, что ее работа за один оборот движущих колес равна:

а) для электровоза — полной механической работе на валах тяговых электродвигателей за вычетом работы сил сопротивлений в передаточном механизме (зубчатой передаче) за тот же оборот движущих колес;

б) для тепловоза — работе газа во всех цилиндрах дизеля за вычетом работы сил сопротивления (главным образом сил трения) в самом дизеле на вспомогательные нужды (компрессор, холодильник, зарядка аккумуляторной батареи и др.) и работе, затрачиваемой на преодоление сил сопротивления в передаточном к ободу движущих колес механизме;

в) для паровоза — полной работе пара во всех цилиндрах паровой машины за вычетом сил сопротивлений (трений) в движущем и парораспределительном механизме.

Таким образом, за оборот движущих колес работа касательной силы тяги меньше работы индикаторной силы тяги на величину затрат энергии на вспомогательные нужды и потери работы, связанной с передачей внутренней механической работы двигателя на обод движущих колес. Если обозначить через Wм среднее значение условной силы, эквивалентную указанным затратам энергии и потерям работы, то

Fк = Fi — Wм, (3.2.1-1)

или

, (3.2.1-2)

где – механический коэффициент полезного действия локомотива.

Различают касательную силу тяги локомотива Fк и двигателя Fкд

Fк = Fкд. (3.2.1-3)

Сила тяги на сцепке приложена к сцепке между локомотивом и первым вагоном. Она определяется из условия, что ее работа за один оборот движущих колес равна работе касательной силы тяги за вычетом работы сил сопротивлений, возникающих при движении локомотива «как повозки». Понятие об этих силах дает движение электровоза или тепловоза при снятых зубчатых передачах от тяговых двигателей к колесам, или движение паровоза при разобранном движущем механизме, например, при снятом шатуне. В указанных случаях локомотив из самодвижущегося экипажа обращается в «повозку», наподобие вагона, которую теперь надо двигать при помощи посторонней силы. Отсюда и название «сопротивление локомотива как повозки».

Из этого следует, что при равномерном движении на прямом горизонтальном пути

Fп = Fк — W’о, (3.2.1-4)

где Fп – сила тяги на сцепке;
Fк – касательная сила тяги;
W’о – сопротивление локомотива как повозки или основное сопротивление движению локомотива.

В случае неравномерного движения сила тяги на сцепке будет меньше при ускоренном движении и больше при замедленном движении по сравнению со значениями силы тяги, определяемым формулой 3.2.1-4, т.к. часть силы будет расходоваться на повышение или понижение кинетической энергии локомотива. Действительная сила тяги, измеряемая динамометром на сцепном приборе первого вагона, называется динамометрической

Fд = Fп — Мл а, (3.2.1-5)

где Мл – масса локомотива, т;
а – ускорение локомотива, м/с2.

Очевидно, что при равномерном движении (а = 0 м/с2), сила тяги на сцепке и динамометрическая сила тяги равны.

При производстве тяговых расчетов можно пользоваться любым выражением силы тяги — индикаторной, касательной и силой тяги на сцепке; необходимо только соответствующим образом определять действующую на поезд силу сопротивления. В случае использования индикаторной силы тяги в общее сопротивление поезда должны войти сопротивление состава (вагонов), сопротивление локомотива как повозки и сопротивление машины локомотива при тяговом режиме; при расчетах по касательной силе тяги общая сила сопротивления поезда должна состоять из сопротивления состава и сопротивления локомотива как повозки и, наконец, при расчетах по силе тяги на сцепке в качестве общей силы сопротивления будет фигурировать, очевидно, только сопротивление состава.

Вся система тяговых расчетов, принятая на отечественных железных дорогах, изначально ориентируется на проведение расчетов с горизонтальными силами, отнесенными именно к точке касания колес с рельсами. Это требование зафиксировано во всех изданиях ПТР. В частности, в издании 1985 г. прямо указано: «1.1.5. Порядок расчетов. Тяговые расчеты выполнять по силе тяги на ободах движущих колес (по касательной силе тяги Fк)».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *