Пленочный ДМРВ

Датчик массового расхода воздуха: постоянство состава горючей смеси

В современных дизельных и бензиновых инжекторных двигателях очень важно поддерживать постоянный состав горючей смеси независимо от режимов работы. Ключевую роль в решении этой задачи играет датчик массового расхода воздуха (ДМРВ). Все о ДМРВ, его типах, устройстве, работе и ремонте читайте в статье. ния, которые серьезно сказываются на конструкции агрегатов. Главные усилия конструкторов направлены на то, чтобы двигатель как можно эффективнее сжигал топливно-воздушную смесь, и выбрасывал в атмосферу минимум вредных веществ. Достигаются эти цели несколькими путями, но наиболее эффективным из них является поддержка стехиометрического состава горючей смеси на различных режимах работы двигателя. За понятием «стехиометрический состав горючей смеси» скрывается довольно простая вещь — это такой состав топливно-воздушной смеси, в котором предусмотрено ровно столько воздуха, которое необходимо для наиболее полного сжигания (окисления) имеющегося объема топлива. Только при таком составе топливо будет сгорать наиболее полно и с минимальным образованием опасных соединений. Однако здесь есть сложность — на различных режимах работы двигателя стехиометрический состав топливно-воздушной смеси должен быть разным, а значит, его необходимо оперативно изменять. Поэтому в си Все статьиВ современных дизельных и бензиновых инжекторных двигателях очень важно поддерживать постоянный состав горючей смеси независимо от режимов работы. Ключевую роль в решении этой задачи играет датчик массового расхода воздуха (ДМРВ). Все о ДМРВ, его типах, устройстве, работе и ремонте читайте в статье. чеством топлива для образования смеси), моментами впрыска и моментами зажигания. Главная особенность датчика в том, что он практически мгновенно реагирует на изменение режима работы двигателя. Причина тому проста: датчик устанавливается на пути между фильтром и дроссельным узлом, поэтому при изменении степени открытия дроссельной заслонки (которая управляется педалью газа) изменяется и объем проходящего через ДМРВ воздуха. В результате ЭБУ получает информацию об изменении поступающего в систему питания объеме воздуха и в соответствии с этим изменяет состав горючей смеси. Кроме того, по информации от ДМРВ могут управляться и другие системы управления, например — система улавливания паров бензина в бензиновых моторах, система рециркуляции ОГ в дизельных моторах и т.д. Типы и конструкция ДМРВ Первые инжекторные двигателя оснащались механическими датчиками расхода воздуха, однако сегодня они вытеснены более современными и эффективными устройствами. В настоящее вр

Системы впрыска бензиновых двигателей

Двигатели с системами впрыска топлива, или инжекторные двигатели, почти вытеснили с рынка карбюраторные моторы. На сегодняшний день существует несколько типов систем впрыска, отличающихся устройством и принципом работы. О том, как устроены и работают различные типы и виды систем впрыска топлива, читайте в этой статье. а не может обеспечить все возрастающие требования по экологической безопасности. Кроме того, поломка одной форсунки фактически выводит двигатель из строя. Поэтому сегодня двигатели с центральным впрыском практически не выпускаются. Распределенный впрыск 1 — цилиндры двигателя; 2 — факел топлива; 3 — электрический провод; 4 — подача топлива; 5 — впускной трубопровод; 6 — дроссельная заслонка; 7 — поток воздуха; 8 — топливная рампа; 9 — электромагнитная форсунка В системах с распределенным впрыском используются форсунки по числу цилиндров, то есть у каждого цилиндра — своя форсунка, расположенная во впускном коллекторе. Все форсунки объединены топливной рампой, через которую в них подается топливо. Существует несколько разновидностей систем с распределенным впрыском, которые отличаются режимом работы форсунок: — Одновременный впрыск; — Попарно-параллельный впрыск;

Топливная система автомобиля

Для работы двигателя необходимо топливо, которое должно в определенные моменты подаваться в цилиндры — эту задачу решают топливные системы (или системы подачи топлива). О том, как устроены топливные системы и какие отличительные черты имеют системы подачи топлива различных двигателей — читайте в этой статье. raquo; из-за понижения давления в цилиндре при опускании поршня. Инжекторная система подачи топлива (система впрыска топлива) Система подачи топлива инжекторных двигателей имеет следующие принципиальные отличия от топливной системы карбюраторных моторов: — Топливо из бака подается на топливную рампу, к которой подключены форсунки; — Воздух в камеры сгорания подается через дроссельный узел; — Топливный насос создает достаточно высокое давление, которое необходимо для обеспечения впрыска топлива форсунками в камеры сгорания. Также в системах впрыска обязательно присутствует блок управления, который как раз и управляем впрыском, в зависимости от режима работы обеспечивает необходимый состав топливно-воздушной смеси и т.д. Существует два основных типа инжекторных двигателей: — Моновпрыск (одна форсунка на все цилиндры, сейчас почти не используется); — Распределенный впрыск (индивидуальная форсунка для каждого цилиндра, существует несколько разно Все статьи

просмотров: 40096, дата публикации 8 марта 2016 г.

Микроконтроллер для замены ДМРВ на Digifant (Bosch 0280202106, 037906301, 037906301C, …). Выпуск расходомеров на эту топливную систему прекратился и если где-то удаётся найти на складе родной расходомер, то цена настолько космическая, что сразу отпадает желание его покупать. Для выхода из этой ситуации создан контроллер, которые преобразует сигналы с современного расходомера в понятные для ЭБУ Digifant. Это позволяет заменить вышедший из строя ДМРВ на современный, который можно купить в любом авто магазине за умеренную стоимость.

Вы можете приобрести только контроллер и купить всё остальное самостоятельно, либо купить комплект который включает в себя всё необходимое для установки.

На текущий момент продаётся 6-ая версия контроллера. С середины сентября 2019 года, существенно изменилась прошивка, контроллеры снова 6-ти проводные. Теперь карта прошивок стала трехмерной с большим обогащением на низких оборотах. Инструкция для ознакомления introduction_digifant_09_2019_v6.pdf

Инструкция по установке расходомеров 20.3855 и 20.3855-10 с переходным контроллером на двигатели VAG 2E, PF, PB, ABK, OPEL C20NE. Уважаемые клиенты, данная инструкция размещена прежде всего для ознакомительных целей, чтобы вы имели представления какие работы вам необходимо будет произвести чтобы установить современный расходомер. Пользуйтесь пожалуйста инструкцией которая прилагается к вашему контроллеру в посылке.

Варианты установки расходомера на крышку воздушного фильтра: Двигатель 2Е, используется крышка от двигателя с моновпрыском.

Двигатель ABK.

Важно! При установке расходомера на крышку воздушного фильтра проходное отверстие в крышке не должно быть меньше проходного отверстия в расходомере, в противном случае расходомер будет завышать реальный расход воздуха. На машинах с установленным ГБО газовый смеситель должен находиться после расходомера, в районе дроссельной заслонки.

Вид платы переходного контроллера.

Распиновка расходомера 20.3855 (Siemens 5WK9 635)

1 Общий
2 Питание +12в
3 Сигнал (Расход)
4 Общий
5 Температура

Распиновка расходомера 20.3855-10 (Siemens 5WK9 6351)

1 Температура
2 Общий
3 +5 вольт
4 +12 вольт
5 Сигнал (Расход)
6 Общий

Распиновка штатного расходомера VAG (ABK/2E/PF/PB):

1 Температура
2 Сигнал (Расход)
3 +5 вольт
4 Общий

Распиновка штатного расходомера OPEL (C20NE):

1
2 Сигнал (Расход)
3 +5 вольт
4 Общий
5 Температура

Назначение перемычек в переходном контроллере:

1-2, 3-4 Выбор варианта характеристики (стандарт/обогащенная)

5-6 Выбор расходомера. 6-контактный 20.3855-10 (снята), или 5 контактный 20.3855 (вставлена).

11-12 Коррекция топливной смеси через штатный сигнал температуры воздуха.

7-8 вкл./выкл. доп. обогащения при резком открытии дросселя.

11-12 Коррекция смеси через штатный сигнал температуры воздуха.
7-8 Обогащение при разгоне. Снята – экономичный режим. Вставлена – стандартный режим.

Подключение

Расходомер устанавливаем на место штатного расходомера или используем крышку воздушного фильтра от двигателя с моновпрыском (для двигателя VW 2E).

Схема подключения контроллера с расходомером 20.3855

Схема подключения контроллера с расходомером 20.3855-10

Белый провод контроллера используется для синхронизации цифрового фильтра с сигналом оборотов.

Возможно 3 режима работы цифрового фильтра:

1. Старый режим, без сигнала оборотов. В этом случае белый провод никуда не подключается.

2. Минимальная фильтрация сигнала. В этом случае белый провод следует соединить с общим.

Данный режим не совместим с некоторыми версиями Digifant.

3. Режим с синхронизацией от датчика холла. Сигнал оборотов подключается к средней ножке датчика холла на распределителе зажигания. В этом режиме сигнал расходомера фильтруется пропорционально времени одного рабочего цикла цилиндра.

Важно! При подключении питания +12в на катушку не путать 15-й с 1-м контактом катушки, идущим к коммутатору! В этом случае выйдет из строя расходомер и переходной контроллер! Перед подключением провода питания проверьте, правильно ли у Вас подключена катушка. Открутите клемму с 15-го контакта катушки и включите зажигание. +12в должно быть на проводе с клеммой. На 1-м контакте катушки напряжения быть не должно! В противном случае нужно поменять местами провода, идущие на 1-й и 15-й контакт.

На Двигателе C20NE +12в удобно подключить к одному из двух черных проводов внутри короба в районе головки блока цилиндров, выходящих справа в сторону катушки (4-я фотография, вариант #4).

Варианты катушек зажигания, катушка №1

Варианты катушек зажигания, катушка №2

Варианты катушек зажигания, катушка №3

Варианты подключения №4, для Opel

Настройка:

Как правило настройка контроллера не требуется, однако в силу технологического разброса характеристик расходомеров возможно потребуется скорректировать состав смеси джамперами или подстроечным резистором 9. Глубина регулировки смещения подстроечным резистором около +-0,15в.

Только для двигателя 2E на VW passat: штатный СО потенциометр рекомендуется установить в начальное положение (выставить около 1в на сигнальной ножке или около 300ом на самом резисторе). На двигателях ABK, PF, PB такого потенциометра нет.

Только для двигателя OPEL C20NE: выставить в режиме коррекции топливной смеси на синем проводе ~3,7в. (подробнее на следующей странице данной инструкции).

Подстроечный резистор 9 также установить в среднее положение (по-умолчанию он так и выставлен). Джамперы коррекции смеси в переходном контроллере выставить согласно таблице на 2-й странице данной инструкции в соответствии с типом устанавливаемого расходомера и кодом двигателя.

Включить зажигание.

1. Проконтролировать напряжение на выходе расходомера 20.3855 (между черным и желтым проводом контроллера). Оно должно быть не более 0,02-0,03в. Для расходомера 20.3855-10 начальное напряжение составляет около 0,6-0,65в. Если напряжение выше – расходомер неисправен либо неверно подключен. На выходе переходного контроллера (между черным и зеленым проводом) должно быть около 0,22в.

2. Завести и прогреть двигатель. На горячую, на холостом ходу на выходе переходного контроллера должно установиться напряжение около 0,8-0,85в для двигателей 2E, ABK, PF, PB, около 0,9-0,95в на Opel C20NE, или 1,0-1,1в для двигателей 1P (на холодную будет более 1,3в), однако в зависимости от состояния механики двигателя, форсунок, регулировки УОЗ напряжение может выходить из указанного диапазона в большую или меньшую сторону.

Подкорректировать выходное напряжение на ХХ подстроечным резистором 9. Поворот резистора по часовой стрелке обедняет смесь, против часовой – обогащает. Не прикладывайте излишних усилий при повороте движка подстроечного резистора. Косвенным признаком правильно настроенного расходомера может служить отсутствие «зависания» оборотов при прогазовке и резком сбросе газа на прогретом моторе.

Для блоков управления, не имеющих диагностического разъема (Ранние 2E, PF, PB) нужно сделать следующее:

Снять разъем с синего датчика температуры. З раза дросселем поднять обороты двигателя выше 3000об. После чего ЭБУ переходит в режим базовых установок, сбрасывается адаптация, отключается лямбда-коррекция и фиксируется УОЗ.

Сигнальный выход лямбда-зонда можно использовать как ориентир качества смеси. Питание на подогрев лямбды при этом должно быть подключено. Если выходное напряжение на сигнальном проводе лямбды ниже 0,5в – смесь бедная. Если выше 0,5в – смесь богатая. Медленно поворачивая подстроечный резистор в контроллере нужно найти область, где напряжение на лямбде будет перескакивать через порог 0,5в, что и будет соответствовать оптимальной настройке расходомера.

При отсутствии лямбда-зонда смесь можно выставить по газоанализатору, выставив СО в районе 0,7-1%. Затем винтом на дросселе нужно выставить холостые около 800 об., и проверить УОЗ, после чего подключить разъем температурного датчика на место.

При настройке двигателей ABK и поздних версий 2E в базовые настройки можно попасть только через VAGCOM, а при отстройке смеси сигнальный провод лямбда-зонда должен быть отключен от ЭБУ.

Будьте внимательны при отключении разъема лямбды на двигателях 2E. Сигнальная «земля» со стороны разъема ЭБУ должна оставаться подключенной на кузов (мотор), в противном случае Digifant «дуреет», и смесь обедняется до предела диапазона лямбда-регулирования. Аналогичный эффект происходит при установке 4-х проводной лямбды, где сигнальная земля не связана с корпусом лямбды. В этом случае нужно добавить с сигнальной земли разъема лямбда-зонда перемычку на мотор.

Произвести пробную поездку. При наличии признаков обедненной смеси (провалов при ускорении) переключиться на более богатую характеристику, повторив регулировку смеси на холостых.

Режим коррекции топливной смеси

Для нестандартных случаев в контроллере есть возможность коррекции топливной смеси через штатный сигнал температуры воздуха, который при установке ДМРВ приобретает новую функцию.

Для расчета времени впрыска блоку управления нужно знать массу расходуемого воздуха, а штатный расходомер это датчик объемного расхода воздуха (VAF), работающий в паре со встроенным датчиком температуры всасываемого воздуха. По сигналам VAF и ДТВВ Digifant и пересчитывает объем в массу. При замене VAF на электронный ДМРВ (датчик массового расхода, который уже скомпенсирован по температуре) на штатный сигнал температуры воздуха нужно подать фиксированную величину, для того чтобы не было двойной компенсации.

В базовых настройках на сигнал ДТВВ подается напряжение около 1,0в для VAG или около 3,7в для OPEL C20NE, что соответствует температуре воздуха в нормальных условиях, ~20-25 градусов.

При необходимости напряжение можно как уменьшить до 0,7в, так и увеличить до 4в, что будет соответствовать температуре воздуха на впуске около -35 градусов и, соответственно обогащения смеси ~ на 20%.

Функция полезна при признаках обеднения смеси, установке нештатных форсунок с меньшей производительностью.

Ориентировочная зависимость температуры впускного воздуха для расходомеров VAG, которая будет сообщаться блоку управления Digifant от напряжения на сигнальном проводе температурного датчика (синий провод контроллера):

Температура воздуха Напряжение, В
-35 4
-25 3,5
-18 3
-10 2,6
0 2
10 1,5
25 1

Метод калибровки:

1. Включить зажигание.

2. Установить перемычку 11-12.

3. Подстроечным резистором 9 выставить желаемое напряжение на синем проводе контроллера в диапазоне 0,7-4,0в, предварительно запомнив его первоначальное положение.

4. Снять перемычку 11-12, переставив ее в нейтральное положение 10-11. В этот момент калибровка переносится в энергонезависимую память контроллера.

5. Вернуть подстроечный резистор в среднее положение и проверить смесь по сигналу лямбда-зонда или газоанализатору.

Внимание! Регулировку можно проводить на заведенной машине. Вернуть данную корректировку в базовую настройку можно установив напряжение 1,0-1,1в на синем проводе контроллера.

Возможные проблемы.

1. Двигатель богатит, черный дым из выхлопной трубы, высокий расход топлива, напряжение на зеленом выходе контроллера на холостых более 1в.

Такие симптомы типичны для неисправности лямбда-зонда.

Проверить лямбда-зонд можно следующим образом:

Прогреть двигатель не менее 5 минут, на заведенной машине на холостых подключить цифровой мультиметр в режиме измерения 20V между сигнальным проводом лямбда-зонда и кузовом. На холостых оборотах и при прогазовках должно меняться напряжение от 0 до 1в. Если напряжение постоянно висит в районе 0,45-0,5в или около 0в, значит лямбда неисправна или на ней нет питания подогрева 12в.

Если на лямбда-зонде напряжение больше 1в или имеет отрицательные значения, то она тоже неисправна, либо отсутствует электрический контакт приемной трубы с двигателем. С 3-х проводными лямбда-зондами такие проблемы не редко встречается на старых машинах, когда приемная труба имеет значительную коррозию, а в соединениях используется керамический герметик.

2. На холостых двигатель работает не стабильно. Плавают обороты, глохнет, хлопки во впуск при открытии дросселя.

— Неисправно реле защиты от перенапряжений (№30).

— Засорены форсунки, неравномерная подача топлива по цилиндрам.

— Подсос воздуха во впускной коллектор

— Очень бедная смесь. (произвести регулировку смеси согласно инструкции выше).

В тонкой и точной настройке автомобильного двигателя важно всё: и качество автожидкостей, и нормальная работа каждого элемента, и слаженность всех процессов. Одним из элементов, определяющих, насколько правильно в конечном итоге будет работать автомобиль, является датчик массового расхода воздуха, он же расходомер воздуха или MAF-sensor (от Mass Air Flow), как его чаще называют автомобилисты.

Зачем нужен ДМРВ?

Для полного сгорания одной части топлива нужно примерно 14,7 частей воздуха, такая смесь называется стехиометрической, оптимальной по соотношению. Будет меньше воздуха, чем нужно – бензин не сгорит полностью, получим грязный выхлоп, не соответствующий современным экологическим нормам. Будет больше воздуха – на обедненной смеси двигатель не сможет развить полную мощность.

Расходомер предназначен для постоянного контроля количества поступающего в цилиндры воздуха и передачи этих данных системе регулировки впрыска топлива. То есть, чем больше воздуха идет в двигатель, тем больше топлива будет подано на форсунки.

Когда водитель нажимает на педаль газа, он регулирует именно подачу воздуха: открывается дроссельная заслонка (непосредственно или от сигнала ЭБУ). Поступает больше воздуха – реагирует ДМРВ, после чего подается больше топлива в камеры сгорания и увеличиваются обороты двигателя.

Нормально работающий расходомер воздуха позволяет не только максимально эффективно использовать топливо, но и максимально эффективно использовать катализатор и сажевый фильтр, а в общей перспективе – сократить расходы на топливо, уменьшить износ узлов автомобиля и продлить время комфортной эксплуатации. Электроника учитывает показатели не только ДМРВ, но и лямбда-зонда, что позволяет более точно контролировать подачу топлива.

Виды и принцип действия

Схема ДМРВ в корпусе

Эволюция расходомеров направлена на поиск методов более точного измерения, учета большего количества параметров, чтобы в итоге получить максимально стабильную работу двигателя.

Механические датчики (расходомеры с трубкой Пито) работали по принципу воздушного сопротивления: чем сильней поток воздуха, тем больше отклонялась внутренняя демпфирующая пластина. Эти системы были долговечными и надежными, но недостаточно точными. С появлением более современных топливных систем понадобились более прогрессивные методы измерения.

Следующее поколение – термоанемометрический датчик с платиновой нитью (Hot Wire MAF Sensor). Именно платиновой, так как этот металл дольше всего сопротивляется термической деградации. Принцип действия основан на поддержании постоянной температуры нагретой нити: чем больший поток воздуха проходит через нее, тем быстрей она остывает и тем больше энергии нужно на нагрев. Контроль температуры осуществляется терморезистором, а данные о затраченной на нагрев нити энергии передаются на ЭБУ как информация о количестве проходящего через нить воздуха.

Схема датчика MAF. 1. Кольцо. 2. Платиновая нить.
3. Термокопенсационное сопротивление. 4. Крепление кольца.
5. Корпус электронного модуля.

Для более точного измерения в современных датчиках учитывается еще и температура поступающего воздуха.

Самой частой причиной выхода из строя является загрязнение нити отложениями пыли и моторного масла. Поэтому в таких датчиках предусмотрена функция самоочистки: после каждой остановки двигателя платиновая нить на пару секунд разогревается до 1100оС. Все органические отложения мгновенно сгорают или обугливаются.

Недостатком нитевых датчиков является ограниченный ресурс работы: платина, несмотря на свою стойкость, рано или поздно выгорает.

Более прогрессивной модификацией стал пленочный датчик (Hot Film Air Flow Sensor, HFM). Принцип работы тот же, что и у проволочного: масса входящего воздуха определяется по степени охлаждения нагревательного элемента. На керамическую основу (подложку) устанавливаются все необходимые элементы в виде тонкопленочных резисторов, в том числе и нагревательный элемент в виде платинового напыления. Сенсор устанавливается в воздушном канале, через который проходит только входящий поток воздуха (измерения получаются более точными за счет отсутствия обратных воздушных волн от работающих клапанов и поршней двигателя). В пленочных датчиках отсутствует проблема загрязнения: пыль и моторное масло не попадают на нагревающийся слой, а значит, нет необходимости в самоочистке. В пленочных сенсорах учитывается и плотность воздуха, которая также влияет на скорость охлаждения нагревательного элемента.

Схема датчика HFM. 1. Электрический разъем. 2. Внешний корпус.

3. Электронная схема. 4. Термоэлемент. 5. Корпус датчика. 6. Канал воздушного потока.

В самых новых моделях автомобилей конструкторы уже отказались от ДМРВ, заменив их датчиками абсолютного давления. Но расходомеры воздуха, основанные на нагревательном элементе, в настоящее время используются наиболее широко.

Место установки

Поскольку датчики чувствительны к загрязнениям, их устанавливают в воздуховоде после воздушного фильтра перед дроссельной заслонкой. Сам датчик расположен в корпусе – пластиковой трубке, закрытой с одной стороны сетчатым фильтром, предотвращающей завихрения воздушного потока. Продаваться датчики могут как вместе с корпусом, так и отдельно, если конструкция датчика предусматривает замену центрального элемента.

Разъем на датчике подключается в бортовую сеть: к источнику напряжения и ЭБУ.

Поломки расходомеров

Чаще всего датчики расхода воздуха выходят из строя просто от износа: платиновая нить (и платиновое напыление не кремниевой пластине) постепенно истончается от нагрева. У проволочного ДМРВ ресурс составляет примерно 150 тыс. км, но эта цифра может стать и больше, и меньше, в зависимости от состояния других узлов автомобиля.

Поврежденное напыление дорожек на расходомере

Причиной досрочной поломки датчика чаще всего является грязь на нагревательном элементе: пыль и моторное масло искажают показания и вызывают перегрев.

Сломанный датчик не ремонтируется, его меняют на новый. Учитывая, что это не самая дешевая деталь, будет нелишним позаботиться о максимальном продлении срока эксплуатации. На работу расходомера воздуха влияют:

  • Состояние воздушного фильтра. Если фильтры регулярно менять и использовать только качественные, можно не беспокоиться о попадании пыли в воздуховод. Если же фильтр вышел из строя или не соответствует техническим требованиям, поломка расходомера покажется ерундой по сравнению со стоимостью ремонта двигателя.
  • Состояние двигателя. Из работающего мотора в воздуховод могут попадать пары масла. Масляные отложения, загрязняющие платиновый элемент, ускоряют его износ. На концентрацию моторного масла в картерных газах влияет состояние поршневых колец и сальников клапанов.
  • Состояние проводки. Одна из возможных причин поломки датчика – нарушение электрических контактов. Эту причину иногда можно устранить, если повреждение не серьезное.

Когда расходомер выходит из строя, нарушается баланс между поступающим в двигатель бензином и воздухом. Соответственно, проблемы будут отражаться на работе двигателя:

  • Повышается расход топлива,
  • Нарушаются показатели разгона, возникают провалы при наборе скорости,
  • Нетипичная работа двигателя на холостом ходу (слишком высокие или слишком низкие обороты),
  • Горит Check Engine,
  • Двигатель плохо заводится или не заводится вообще.

Причиной перечисленных проблем не обязательно будет поломка ДМРВ: более точно можно определить только после диагностики. Самостоятельно можно разве что осмотреть место подключения датчика (иногда сбой в работе двигателя появляется из-за повреждения воздуховода) и, если есть подходящие инструменты, то снять сам датчик и заменить его заведомо рабочим. Если после замены проблемы с двигателем остались – дело не в расходомере, а в другой неисправности.

Сильно загрязненный датчик можно попытаться «реанимировать» — очистить нагревательный элемент, чтобы он смог проработать еще немного, до покупки нового. Используют для этой цели специальные очистители (карбоклинер или очиститель для ДМРВ), что позволяет ненадолго продлить «жизнь» детали. Однако нужно помнить, что элементы датчика повреждаются от малейшего воздействия, так что протирать чувствительный элемент (даже слегка!) нельзя.

Неисправный расходомер воздуха влияет не только на режим работы двигателя, но и на ресурс выхлопной системы: сажевый фильтр и катализатор весьма чувствительны к чистоте выхлопа, которая невозможна без оптимального соотношения воздуха и топлива. В современных автомобилях все компоненты взаимозависимы, и поломка даже такого маленького датчика может вызвать «цепную реакцию» неисправностей. А значит, поломки лучше устранять сразу, чтобы и дальше ездить без проблем.

В современных дизельных и бензиновых инжекторных двигателях очень важно поддерживать постоянный состав горючей смеси независимо от режимов работы. Ключевую роль в решении этой задачи играет датчик массового расхода воздуха (ДМРВ). Все о ДМРВ, его типах, устройстве, работе и ремонте читайте в статье. воздушного фильтра, чем обеспечивает измерение объема всего поступающего в систему воздуха. Датчик подключен к электронному блоку управления двигателем (ЭБУ), и на основе поступающей от него информации ЭБУ формирует оптимальный (стехиометрический) состав горючей смеси. По данным от ДМРВ ЭБУ управляет дроссельным узлом, временем впрыска топлива (то есть, количеством топлива для образования смеси), моментами впрыска и моментами зажигания. Главная особенность датчика в том, что он практически мгновенно реагирует на изменение режима работы двигателя. Причина тому проста: датчик устанавливается на пути между фильтром и дроссельным узлом, поэтому при изменении степени открытия дроссельной заслонки (которая управляется педалью газа) изменяется и объем проходящего через ДМРВ воздуха. В результате ЭБУ получает информацию об изменении поступающего в систему питания объеме воздуха и в соответствии с этим изменяет состав горючей смеси. Кроме того, по информации от ДМРВ могут управляться и д Все статьи

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *