Длинноходный двигатель

Что касается двух и четырехтактных двигателей, выбор соотношения между ходом поршня и диаметром цилиндра действительно очень важен для определения характеристик отбора мощности. Если ход поршня меньше диаметра цилиндра, соотношение меньше 1, получаем двигатель с коротким ходом (тип «super-square»). Если ход поршня и диаметра цилиндра равны, соотношение равно 1 (тип «square»). Если ход поршня больше диаметра цилиндра, соотношение больше 1, получаем двигатель с длинным ходом (тип «under-square»). При одинаковом объеме двигателя и аналогичных значениях важных параметров наблюдается следующая тенденция: как правило, двигатели с длинным ходом поршня, по сравнению с двигателями с коротким ходом, имеют больший крутящий момент и лучшую тягу, но меньшие обороты и максимальную мощность. Кроме того, благодаря меньшей камере, они, похоже, имеют улучшенное сгорание и меньшее выделение не сгоревших газов. И все же сегодня среди двухтактных двигателей с наилучшими эксплуатационными характеристиками, и не только гоночных, все чаще встречаются те, у которых диаметр цилиндра и ход поршня равны.
Рассмотрим причины, обусловившие этот выбор

В двухтактном двигателе с отличными эксплуатационными характеристиками соотношение между ходом поршня и диаметром цилиндра очень важно для получения рациональной и эффективной с точки зрения гидроаэромеханики компоновки детали типа «link stud» {связывающая стойка).

Преимущества длинного и короткого хода поршня.

В мире специальных мощных гоночных двухтактных двигателей уже вряд ли есть место длинному ходу поршня. В картинге появление на треке двигателя Rotax, 100 смЗ, тип «square», определенно привело к закату эры славных двигателей с длинным ходом поршня (имевших, как правило, типовые размеры 48 мм х55мм), доминировавших до 1988 г.
Вообще говоря, двигатель с длинным ходом поршня способен развивать более высокий момент вращения на меньших оборотах. У него тяжелее шатун, даже если поршень, по теории, может быть легче. При длинном ходе поршня, по сравнению с коротким ходом поршня, ведущий вал всегда имеет больше пространства между пальцем шатуна и шатунной шейкой, поэтому он не столь жесткий, и имеет маховик большего диаметра.
Двигатели с соотношением ход поршня /диаметр цилиндра меньше или равным 1 имеют следующие особенности: наличие клапана на выхлопе, новейшей коробки скоростей с цифровым зажиганием, водяного охлаждения (позволяющих вам работать с большими коэффициентами сжатия, а также с опережением зажигания и бедной карбюрацией) и точной гидроаэромеханики в части перепускных окон. Эти факторы позволили им достичь хороших результатов на малых и средних оборотах, вращаясь с частотой, немыслимой для двигателей сдпинным ходом, развивать очень высокую мощность.
Также двигатели с соотношением ход поршня /диаметр цилиндра меньше или равным 1, по сравнению с двигателями с длинным ходом, имеют следующее преимущество: они могут рассчитывать на меньшую среднюю скорость поршня при той же частоте вращения. Это означает меньшее температурное и механическое напряжение, не говоря об очевидных преимуществах при наполнении насоса с отводом. Что касается продувки, двигатель с коротким ходом поршня имеет преимущество, поскольку короче путь, который свежие газы должны совершать для полной замены выхлопных, а площадь контакта между границами свежих и выхлопных газов меньше. Однако у двигателя с коротким ходом больше проблем с охлаждением, и, как следствие, более высокая чувствительность, исходя из вариации соединения цилиндр/поршень.

Одним из двигателей объемом 100 смЗ, на котором чаще других в истории картинга выигрывали гонки, несомненно, является DAP T75. Он несколько раз побеждал в 80-х годах; его характеристическое соотношение 48 мм х 55 мм, это двигатель с длинным ходом поршня, и отличным крутящим моментом на малых оборотах. Макс, частота вращения — 175000 об/мин.

Двигатель с соотношением ход поршня/диаметр цилиндра, равным 1: идеальное решение…

Соотношение ход поршня /диаметр цилиндра, равное 1, идеальное решение для изготовления специального высокомощного гоночного двигателя (а также для использования на дорогах). Кроме того, сочетание преимуществ, свойственных двигателям с длинным и коротким ходом, позволяет рассчитывать на лучшее соответствие между перепускными и выхлопными окнами. Вообще говоря, это решение позволяет окнам с идеальным соотношением высота/ширина обеспечивать лучшее «дыхание» двигателя при любых оборотах.
Например, рассмотрим обычный двигатель 125 смЗ, с диаметром цилиндра 56 мм и ходом поршня 50,6 мм (типично для двигателей Yamaha). Оказывается, обычное выпускное окно (со штифтом и бустером) и единственное находящееся напротив него окно иногда связаны не 4 боковыми перепускными окнами (что свойственно двигателям типа «square»), a 6. Это решение часто использовалось в двигателях с коротким ходом, поскольку у двигателя с объемом 125 смЗ и соотношением 56 мм х 50,6 мм часто оказывалось, что боковые поперечные окна излишне расширялись: они требовали существенного внутреннего давления и скорости расхода для обеспечения хорошей продувки, хорошего повторного заполнения, а такие значения давлений можно было получить только на высоких оборотах. Эту проблему в некоторых моделях двигателей можно решить разделением первичного (а иногда и вторичного) перепускного окна на два, уменьшая секцию расхода и получая более чистую подачу на средних оборотах.

Rotax стал первым производителем, вернувшимся к выпуску двигателей типа «square» (ход поршня равен диаметру цилиндра) с объемом 100 смЗ для картинга. Омологация прошла в 1988 г. Превосходство этого двигателя на быстрых треках ознаменовало историческую перемену: на некоторых треках самые последние двигатели типа «square» с объемом 100 смЗ превышают показатель 21000 об/чин.Более глубокие исследования в области гидроаэромеханики сделали возможным применение решения с 5 перепускными окнами и на двигателях с коротким ходом. Причина, по которой решили не отказываться от использования двигателей этого типа в гонках, в том, что двигатели типа «square» имеют лучше мощность на малых и высоких оборотах. В то же время, двигатель с соотношением 56 х 50.6 мм сохранял такое преимущество, как близкая к максимальной мощность на средних оборотах (в аналогичных двигателях это, понятно, является базовой концепцией!). Последним из производителей мотоциклетных двигателей, перешедшим от двигателя с соотношением 56×50.6 мм на чемпионате мира с объемом 125 смЗ, стала Yamaha, представители которой — инженер Бартол и гонщик — на личном опыте смогли почувствовать разницу между двумя решениями. Сразу после перехода с 56×50.6 мм на 54×54 мм показатели фирмы выросли, и вскоре она стала непримиримым соперником таких компаний, как Aprilia и Honda.

Конфигурация link stud с 4 противолежащими боковыми перепускными окнами и корректирующим перепускным окном всегда гарантирует наилучшие результаты продувки и эффективности наполнения.

Некоторые преимущества в гидроаэромеханике, которые можно получить за счет увеличения диаметра цилиндра в четырехтактных двигателях

Не считая самого очевидного преимущества, получаемого при увеличении диаметра, т.е., гарантированного большего прироста объема, чем при увеличении хода поршня, такой подход дает ощутимые преимущества, касающиеся гидроаэромеханики четырехтактных двигателей. Увеличивая зону камеры сгорания, вы, фактически, получаете большее пространство вокруг седел клапанов, и очевидные преимущества, касающиеся заполнения цилиндра и снижения вредных воздействий на зоны между корпусом цилиндра и тарельчатым клапаном, что может иметь существенное значение при высоких оборотах. Затем, в некоторых случаях, вы можете перейти к установке больших клапанов, и это может стать неизбежным в точке, в которой цилиндр потребует более широких каналов для лучшего заполнения на повышенных оборотах.
В отличие от двухтактного, четырехтактный двигатель много выигрывает от снижения хода поршня из-за моментов, не только жестко связанных с диаметром клапана, но и связанных со средней скоростью перемещения поршня, которая, при превышении порога в 25 м/с, начинает вызывать первые проблемы в части надежности.
Четырехтактный двигатель имеет одну фазу (цикл выхлопа), когда поршень поднимается к головке без замедления (при открывании выпускного клапана поршень поднимается, не испытывая влияния противодействующей силы). Этого не происходит в двухтактных двигателях (компрессия начинается, фактически, сразу после выхлопа, и с нею приходит замедление).

Двигатели классов KZ и KF: одной и той же дорогой. На всех двигателях объемом 125 смЗ классов KZ и KF ход поршня равен диаметру цилиндра: на всех — 54 х 54 мм.

Средняя скорость поршня

Под средней скоростью поршня мы понимаем среднюю скорость, достигаемую поршнем при определенных оборотах. Средняя — ибо поршень за один оборот коленвала виртуально останавливается дважды, в ВМТ и НМТ, для смены направления движения снизу вверх и наоборот. Основная часть напряжения на поршень приходится на его штифт: разрыв поршня при чрезмерных оборотах происходит в этой критической точке, именно этим объясняется ее укрепление.
Линейная скорость поршня представлена формулой:
V = (C x g):30
где V- средняя скорость поршня, м/с,
С — ход поршня, м (ход в 40 мм равен 0,04 м)
g — скорость вращения (обороты), при которой необходимо определить среднюю скорость поршня
30 -фиксированное число
Изучая некоторые двигатели, в том числе, гоночные, мы обнаружили интересные вещи.
Двигатель 50 смЗ для скутера при 8000 об/мин имеет среднюю скорость поршня 10,6 м/с
Двигатель 100 смЗ для карта ICA при 21000 об/мин имеет среднюю скорость поршня 35 м/с!

Сравнение основных конструктивных особенностей.

Сравниваем два двигателя объемом 125 смЗ, имеющие различные конструктивнее особенности. В первом ход поршня и диаметра цилиндра равны между собой, 54 х 54 мм, имеется разделенный выпуск с деталью типа «link stud» (связывающая стойка) (Honda), а во втором — короткий ход, 56 х 50,6 мм (Cagiva). Видно, что конструкции их перепускных окон отличаются.

MBA VR1

Чтобы использовать преимущества и двигателей с коротким ходом, и двигателей типа «square», MBA разработала одноцилиндровый двигатель 125 смЗ с диаметром цилиндра 55 мм и ходом поршня 52 мм Количество боковых перепускных окон — 6, из них основное разделено, для обеспечения достаточного давления в тракте и лучшей продувки также и при средней скорости; пятое перепускное окно также разделено.

Двигатель с коротким ходом oт CRS

В последней омологации от CRS был последний двигатель 125 смЗ KZ, использующий короткий ход с соотношением 56 мм х 50,6 мм; на мировых чемпионатах школа Yamaha постоянно выступала с такого рода двигателями, пока не был выпущен двигатель Харальса Бартола 125 см3 54 мм х 54 мм, а впоследствии — и reed derbi 125 см3, и tkm.

Двигатель, который вошел в историю современных двухтактных двигателей: rotax 125 смЗ устанавливается на картах Aprilia, а теперь и на rotax max, с соотношением диаметра цилиндра и хода поршня 54 х 54 мм. Используется компоновка с 4 противоположно расположенными и одним корректирующим перепускными окнами.

Линейная скорость поршня — очень важный параметр в жизни двигателя. Не случайно на двигателе 100 смЗ после расхода 20 литров на средне скоростной кольцевой гоночной трассе, и даже после каждого нагрева на скоростном треке, необходимо устанавливать новый поршень. Не сделав этого, вы рискуете угробить свой двигатель!

По этой формуле вы можете вычислить среднюю скорость поршня любого двигателя. Только вдумайтесь, для двухтактного двигателя еще в середине 80-х порог в 30 м/с казался непреодолимым; затем, с внедрением новейших материалов, достигли 35 м/с, даже на двигателях, способных выдержать только один нагрев в картинге.
В четырехтактных двигателях, где проблема серьезнее, идет расширение в цикле выхлопа (поршень не замедляется при подъеме к ВМТ), предел не должен превышать 25 м/с, хотя во время гонки, и на особенно быстрых двигателях, это предельное значение часто превышалось…

Сравнение диаметра / хода

В возвратно — поступательном движении поршневого двигателя , то соотношение хода , определяется либо / отношение хода ствола или инсультом / отношением ствола , представляет собой термин , чтобы описать соотношение между отверстием цилиндра диаметром и поршнем ходом длиной. Это может быть использовано либо для двигателя внутреннего сгорания , где топливо сжигается в цилиндрах двигателя, либо для двигателя внешнего сгорания , такого как паровой двигатель , где сгорание топлива происходит вне рабочих цилиндров двигателя.

Достаточно всестороннее, но понятное исследование эффектов удара / заточки было опубликовано в Horseless Age , 1916.

Конвенции

В поршневом двигателе существует два разных способа описания отношения хода его цилиндров , а именно: отношение диаметр / ход и отношение ход / диаметр .

Отношение диаметр / ход

Диаметр цилиндра / ход поршня — это наиболее часто используемый термин, который используется в Северной Америке , Европе , Великобритании , Азии и Австралии .

Диаметр отверстия цилиндра делится на длину поршневого хода , чтобы дать соотношение.

Квадратные, квадратные и подквадратные двигатели

Следующие термины описывают условные обозначения конфигураций различных соотношений диаметр цилиндра / ход поршня:

Квадратный двигатель

Квадратный двигатель имеет равное отверстие и размеры инсульта, давая значение отверстия / ход точно , 1: 1.

Примеры квадратного двигателя

1953 — У Ferrari 250 Europa был Lampredi V12 с диаметром цилиндра 68,0 × 68,0 мм (2,7 × 2,7 дюйма).

1970 — Ford 400 имел диаметр ствола и ход поршня 101,6 мм × 101,6 мм (4,00 дюйма × 4,00 дюйма).

1973 — Kawasaki Z1 и KZ (Z) 900 имели диаметр цилиндра и ход поршня 66,0 × 66,0 мм (2,60 × 2,60 дюйма).

1973 — Австралийское подразделение British Leyland создало 4,4-литровую версию двигателя Rover V8 с диаметром цилиндра и ходом поршня 88,9 мм. Этот двигатель использовался исключительно в Leyland P76 .

1982 — Honda Nighthawk 250 и Honda CMX250C Rebel имеют диаметр цилиндра и ход поршня 53,0 × 53,0 мм (2,09 × 2,09 дюйма), что делает его квадратным двигателем.

1983 — Рядный четырехцилиндровый двигатель Mazda FE объемом 2,0 л с идеально квадратными диаметром цилиндра 86,0 × 86,0 мм (3,4 × 3,4 дюйма). Этот двигатель также имеет идеальное соотношение шток / ход 1,75: 1.

1987 — Двигатели Opel / Vauxhaul 2.0 L GM Family II имеют квадратную форму с диаметром цилиндра 86,0 мм × 86,0 мм (3,39 дюйма × 3,39 дюйма); Например, C20XE C20NE C20LET X20A X20XEV X20XER Z20LET Z20LEH Z20LER A20NHT A20NFT.

1989 — Nissan SR20DE представляет собой квадратный двигатель с диаметром цилиндра 86,0 × 86,0 мм (3,39 × 3,39 дюйма).

1990 — Maserati Shamal имел 3217 куб.см (3,2 л) битурбированный двигатель V8 AM 479 с диаметром цилиндра и ходом 80,0 × 80,0 мм (3,1 × 3,1 дюйма). Этот двигатель, после доработок, позже был установлен на Quattroporte IV и 3200 GT.

1990–2010 Saab B234 / B235 — квадратный двигатель с диаметром цилиндра и ходом поршня 90,0 × 90,0 мм (3,54 × 3,54 дюйма).

1991 — Двигатель Ford 4.6 V8 OHC имеет диаметр цилиндра и ход поршня 90,2 × 90,0 мм (3,552 × 3,543 дюйма). На протяжении двух десятилетий он составлял основу легковых и грузовых автомобилей Ford с двигателями V8, разной мощности и конструкции головок.

1995 — Двигатель BMW M52 с рабочим объемом 2793 кубических сантиметра является примером двигателя идеального квадрата с диаметром цилиндра 84,0 мм × 84,0 мм (3,31 дюйма × 3,31 дюйма).

1996 — Двигатель Jaguar AJ-V8 объемом 4,0 литра имеет диаметр цилиндра и ход поршня 86,0 мм.

Двигатель W16 от Volkswagen Group 2005 года, который используется в Bugatti Veyron, также имеет диаметр цилиндра 86,0 × 86,0 мм (3,39 × 3,39 дюйма).

Peugeot XU10 двигатель линия — с рабочим объемом 1998 кубических сантиметров — это пример идеального квадратного двигателя с 86,0 мм × 86,0 мм (3,39 × 3,39 в в) Диаметр цилиндра и ход.

2JZ и 4U от Toyota — это квадратные двигатели с диаметром цилиндра 86,0 мм × 86,0 мм (3,39 дюйма × 3,39 дюйма).

Двигатель Honda J30A имеет диаметр цилиндра и ход поршня 86,0 × 86,0 мм (3,39 × 3,39 дюйма).

Двигатель Suzuki AX100 имеет диаметр цилиндра и ход поршня 50,0 мм × 50,0 мм (1,97 × 1,97 дюйма).

Двигатель Yamaha YBR125 имеет диаметр цилиндра и ход поршня 54,0 × 54,0 мм (2,13 × 2,13 дюйма).

Квадратный или короткоходный двигатель

Двигатель описывается как прямоугольный или короткоходный, если его цилиндры имеют диаметр отверстия больше, чем длина его хода, что дает соотношение диаметр цилиндра / ход поршня более 1: 1.

Двигатель с квадратной формой позволяет использовать больше и больше клапанов в головке цилиндра, более высокие возможные обороты за счет снижения максимальной скорости поршневого кольца и меньшего напряжения кривошипа из-за более низкого пикового ускорения поршня при той же скорости двигателя. Из-за увеличенной площади поверхности поршня и головки потери тепла увеличиваются по мере увеличения соотношения диаметр цилиндра / ход поршня. Таким образом, слишком высокое передаточное число может привести к снижению теплового КПД по сравнению с двигателями других конфигураций. Поскольку эти характеристики благоприятствуют более высоким оборотам двигателя, двигатели с прямоугольной формой часто настраиваются на достижение максимального крутящего момента на относительно высокой скорости. Большой размер / ширина камеры сгорания при воспламенении может вызвать повышенную неоднородность топливно-воздушной смеси во время сгорания, что приведет к увеличению выбросов.

Уменьшенная длина хода позволяет использовать более короткий цилиндр, а иногда и более короткий шатун, что, как правило, делает более квадратные двигатели менее высокими, но более широкими, чем прямоугольные двигатели с аналогичным рабочим объемом .

Примеры движка Oversquare

Двигатели Oversquare (также известные как «двигатели с коротким ходом») очень распространены, поскольку они позволяют более высокие обороты (и, следовательно, большую мощность) без чрезмерной скорости поршня.

Примеры включают малые блоки V8 как Chevrolet, так и Ford. БМВ N45 бензиновый двигатель имеет отношение отверстия / обводки 1.167.

Горизонтально расположенные двигатели, также известные как «боксеры» или «плоские», обычно имеют сверхквадратную конструкцию, поскольку любое увеличение длины хода приведет к двукратному увеличению общей ширины двигателя. Это особенно верно в компоновке Subaru с передним расположением двигателя, где угол поворота передних колес ограничен шириной двигателя. Хотя квадратные двигатели имеют репутацию высоконагруженных машин с низким крутящим моментом, двигатель Subaru EJ181 развивает пиковый крутящий момент уже при частоте вращения 3200 об / мин.

Двигатели Nissan RB, VQ, VK, VH и VR38DETT очень просты. Кроме того, двигатель SR16VE, установленный в Nissan Pulsar VZ-R и VZ-R N1, представляет собой двигатель квадратной формы с диаметром цилиндра 86 мм (3,39 дюйма) и ходом поршня 68,7 мм (2,70 дюйма), что дает ему 175–200 лошадиных сил (130–150 кВт), но относительно небольшой крутящий момент 119–134 фунт-фут (161–182 Н · м; 16,5–18,5 кг · м)

Двигатели с очень большой квадратностью встречаются в гоночных автомобилях Формулы-1 , где строгие правила ограничивают рабочий объем двигателя, что требует достижения мощности за счет высоких оборотов двигателя. Допустимое соотношение ходов приближается к 2,5: 1, что обеспечивает скорость двигателя 18 000 об / мин, при этом остается надежным для нескольких гонок.

Ducati Panigale двигатель мотоцикла массово oversquare с отношением отверстия / хода 1,84: 1. Ducati назвала его «SuperQuadro» , что примерно переводится с итальянского как «суперквадрат» .

Боковой клапан Бельгийского Д-Мотор LF26 авиационные двигатели имеют отношение отверстия / ход 1,4: 1.

Ранние двигатели Mercedes-Benz M116 имели диаметр цилиндра 92 мм (3,62 дюйма) и ход поршня 65,6 мм (2,58 дюйма) для 3,5-литрового двигателя V8.

Подквадратный или длинноходный двигатель

Двигатель описывается как недостаточно квадратный или длинноходный, если его цилиндры имеют меньшее отверстие (ширина, диаметр), чем его ход (длина хода поршня), что дает значение передаточного отношения менее 1: 1.

При заданной частоте вращения двигателя более длинный ход увеличивает трение двигателя и увеличивает нагрузку на коленчатый вал из-за более высокого пикового ускорения поршня. Меньшее отверстие также уменьшает площадь, доступную для клапанов в головке блока цилиндров, требуя, чтобы их было меньше или меньше.

Двигатели с прямоугольной рамой демонстрируют пиковый крутящий момент на более низких оборотах, чем двигатель с прямоугольной рамой, из-за более длинного хода кривошипа и высокой скорости поршня.

В последнее время более распространены двигатели Undersquare, поскольку производители стремятся к созданию все более эффективных двигателей и большей экономии топлива. Двигатели Undersquare имеют более высокое соотношение объема и площади поверхности, что приводит к уменьшению потерь тепла и более высокому BSFC.

Примеры движка Undersquare

Многие рядные двигатели, особенно те, которые установлены поперечно в переднеприводных автомобилях, имеют конструкцию под квадратным углом. Меньший диаметр цилиндра позволяет установить более короткий двигатель, что увеличивает пространство для управления передними колесами. Примеры этого включают многие двигатели Volkswagen , Nissan , Honda и Mazda . Двигатель 1KR-FE, используемый в автомобилях Toyota Aygo , Citroën C1 и Peugeot 107, среди прочих, является примером современного длинноходного двигателя, широко используемого в автомобилях с компоновкой FF . Этот двигатель имеет диаметр цилиндра и ход поршня 71 мм × 84 мм (2,8 дюйма × 3,3 дюйма), что дает ему отношение диаметра цилиндра к ходу 0,845: 1. Некоторые заднеприводные автомобили, которые заимствуют двигатели от переднеприводных автомобилей (например, Mazda MX-5 ), используют конструкцию под квадрат.

Знаменитый двигатель BMW S54B32 был квадратным с диаметром цилиндра и ходом 87 мм × 91 мм (3,4 × 3,6 дюйма), предлагая мировой рекорд крутящего момента на литр (114 Нм / л, 320 фунт-фут / США. gal) для серийных двигателей без наддува в то время; этот рекорд сохранялся до тех пор, пока Ferrari не представила 458 Italia .

Многие британские автомобильные компании до 1950-х годов использовали квадратную конструкцию, в основном из-за системы налога на автомобили, которая облагала автомобили налогом по диаметру цилиндра . Это включает двигатель BMC A-Series и многие производные от Nissan . Троян автомобили использовали undersquare, разделенный поршень , два хода , два цилиндра в двигателе линии; Отчасти это было связано с этим налоговым преимуществом, а отчасти потому, что его пропорции позволяли изгибать V-образные шатуны для двух поршней каждого U-образного цилиндра, что было дешевле и проще, чем два шатуна, соединенных с дополнительным подшипником.

Модульный двигатель Ford 5.4L имеет диаметр цилиндра и ход поршня 90,1 мм × 105,8 мм (3,55 дюйма × 4,17 дюйма), что обеспечивает соотношение диаметр цилиндра / ход поршня 0,852: 1. Поскольку ход поршня значительно больше диаметра внутреннего диаметра, версия этого двигателя SOHC 16V (2 клапана на цилиндр) способна генерировать пиковый крутящий момент 350 фунт · фут при 2501 об / мин.

В Dodge Power Wagon использовался рядный шестицилиндровый двигатель Chrysler Flathead объемом 230 куб. Дюймов (3,8 л) с диаметром цилиндра и ходом 83 мм × 117 мм (3,3 дюйма × 4,6 дюйма), что давало существенно меньшее соотношение диаметра и хода поршня 0,709: 1.

4-литровый двигатель Barra Inline 6 от австралийского Ford Falcon имеет диаметр цилиндра и ход поршня 92,21 мм × 99,31 мм (3,63 дюйма × 3,91 дюйма), что соответствует соотношению ходов цилиндра 0,929: 1.

292 Chevrolet I6 также является недостаточно квадратным, с диаметром цилиндра и ходом 98,4 мм × 104,8 мм (3,875 дюйма × 4,125 дюйма) дюйма (соотношение диаметр цилиндра / ход поршня = 0,939: 1).

Двигатель Mitsubishi 4G63T, используемый в основном во многих поколениях Mitsubishi Lancer Evolution, представляет собой двигатель под квадратным сечением с диаметром цилиндра и ходом 85 мм × 88 мм (3,3 дюйма × 3,5 дюйма).

Двигатель Jaguar XK6 , который использовался во всех 6-цилиндровых Jaguar с 1949 по 1987 год, был недостаточно квадратным. Например, двигатель объемом 4,2 литра имел диаметр цилиндра и ход поршня 92,08 мм × 106 мм (3,63 дюйма × 4,17 дюйма), обеспечивая соотношение диаметр цилиндра / ход поршня 0,869: 1.

Практически все поршневые двигатели, используемые в военных самолетах, были длинноходными. PW R-2800, Wright R-3350, Pratt & Whitney R-4360 Wasp Major , Rolls-Royce Merlin (1650), Allison V-1710 и Hispano-Suiza 12Y-Z — это лишь некоторые из более чем сотни примеров. .

Все суда с дизельными двигателями имеют судовые двигатели под большой площадью. Вяртсиля двухтактного судового дизельного двигателя имеет диаметр и ход 960 мм × 2500 мм (37,8 × в 98,4 дюйма), (отношение отверстия / ход = 0,384: 1).

В то время как большинство современных двигателей мотоциклов имеют квадратную или квадратную форму, некоторые из них — недостаточно квадратные. Kawasaki Z1300 «с прямой шесть двигателей был сделан undersquare , чтобы минимизировать ширину двигателя, в последнее время , новый прямой образный двигатель для серии Honda NC700 использовали undersquare конструкцию , чтобы достичь более высокой эффективности сгорания для того , чтобы уменьшить расход топлива.

Ссылки

Викискладе есть медиафайлы по теме двигателей внутреннего сгорания .

Средняя скорость, и какой она бывает

Для понимания вопроса придется вспомнить немного о конструкции ДВС и принципах его работы. Вы наверняка знаете, что в основе любой конструкции двигателя внутреннего сгорания лежит воздействие расширяющихся газов на поршень. Поршни могут быть любой формы и размеров, но у любого поршня есть такой параметр, как средняя скорость, и от нее зависит очень и очень многое.

Средняя скорость поршня – это величина, которую можно определить по формуле Vp = Sn/30, где S – ход поршня, м; n – частота вращения, мин-1. И именно она определяет степень возможного форсирования двигателя по оборотам, ускорения элементов шатунно-поршневой группы во время работы, а также его механический КПД.

От средней скорости поршня зависят нагрузки на стенку поршня, на поршневой палец, шатун и коленвал. Причем зависимость эта квадратичная: с увеличением скорости (Vp) в два раза нагрузки увеличиваются в четыре раза, а если в три – то в девять раз.

Эксперименты инженеров-мотористов уже очень давно доказали, что классическая конструкция шатунно-поршневой группы выдерживает максимальную скорость порядка 17-23 м/с. И чем выше эта величина, тем скорее изнашивается мотор. Увеличить скорость поршня практически невозможно – самые облегченные гоночные двигатели Формулы-1 имели скорость порядка 23-25 м/с, и это безумно много. Этого удалось достичь только потому, что «формульные» моторы рассчитаны на очень короткую эксплуатацию – от них не требуется «ходить» по 100 000 км.

От теории – к практике. Как известно, мощность мотора – это производная от крутящего момента, помноженного на обороты (об этом я писал большую статью с таблицами и графиками). То есть, если мы хотим получить больше мощности, то надо увеличивать обороты. А так как скорость поршня ограничена, то у нас не остается другого выбора, кроме как уменьшить его ход. Чем меньше расстояние нужно пройти поршню за один оборот, тем меньше может быть его скорость.

Короткоходные, длинноходные и «квадратные» моторы

Казалось бы, выше мы только что озвучили два прекрасных аргумента для максимального уменьшения хода поршня. К тому же, чем меньше ход поршня, тем больше диаметр цилиндра при том же объеме, и тем более крупные клапаны можно поставить. Улучшается газообмен, а значит, и работа мотора в целом… Но, как оказалось, безмерно уменьшать ход тоже нельзя.

Чем меньше ход, тем больше должен быть диаметр цилиндра, если мы хотим сохранить объем. А вот форма камеры сгорания с ростом диаметра цилиндра ухудшается, соотношение объема камеры и площади неизбежно растет, увеличивается коэффициент остаточных газов, возрастают тепловые потери, ухудшается сгорание топлива… КПД падает, склонность к детонации повышается, ухудшаются экономичность и экологичность.

При уменьшении хода поршня снижается, к тому же, и диаметр кривошипа коленчатого вала, а значит, уменьшается крутящий момент мотора. Ухудшаются и массогабаритные параметры двигателей – они становятся куда крупнее в горизонтальном сечении. К тому же для сохранения рабочего объема приходится увеличивать число цилиндров, а это уже ведет к резкому повышению сложности конструкции. В общем, нужен был компромисс.

Основные задачи проектирования моторов решили к 60-м годам прошлого века, тогда же нащупали пределы прочности конструкции по средней скорости поршня. Стало ясно, что оптимальные параметры мощности, общего КПД и габаритов у атмосферного мотора получаются в том случае, если диаметр цилиндра равен ходу поршня или чуть меньше.

На фото: двигатель Nissan Qashqai

Если они совпадают, то такие моторы еще называют «квадратными». Моторы, у которых диаметр цилиндра все-таки больше хода поршня, называют короткоходными, а те, у которых он меньше, – длинноходными.

Внимательный читатель скажет: стоп, а откуда вообще взялись короткоходные моторы, если эксперименты доказали, что эффективнее всего «квадратные» или чуть-чуть длинноходные?! Все просто: короткоходники получили распространение в автоспорте. Там расход топлива и приемистость на низких оборотах не сильно «делали погоду», и можно было пожертвовать КПД ради достижения большей мощности на высоких оборотах при сохранении малого рабочего объема.

Для получения лучшей топливной экономичности, тяги и чистоты выхлопа, наоборот, ход поршня увеличивали, жертвуя оборотами и максимальной мощностью. Длинноходные моторы применяли там, где были нужны тяга и экономичность.

Тем временем, к 80-м годам среднюю скорость поршня в серийных моторах довели до предела в 18 м/с, дальше ее увеличивать не получалось. Такая ситуация сохранилась до 90-х, когда требования к массогабаритным и экономическим характеристикам моторов резко возросли.

Длинноходный прогресс

90-е годы – это в первую очередь массовое внедрение новых экологических норм, резкое повышение массы кузова автомобилей из-за новых требований по пассивной безопасности, а заодно и возросшие требования к габаритам и экономичности силовых агрегатов. Машины становились просторнее изнутри и безопаснее во всех смыслах.

А двигателям приходилось поспевать за прогрессом. Массовый переход на многоклапанные головки блоков цилиндров повысил мощность и сделал моторы чище. Средний рабочий объем мотора постарались уменьшить и тем самым выиграть в расходе топлива и габаритах. Прогресс в области конструирования поршневой группы позволил уменьшить высоту поршня и увеличить длину шатуна, сделав больше механический КПД мотора.

Следовательно, стало возможно перейти к более длинноходным конструкциям, которые при том же рабочем объеме были компактнее, имели больший крутящий момент и к тому же стали экономичнее. Облегчение поршневой группы позволило снизить нагрузки на нее при высоких оборотах, а массовое внедрение турбонаддува и регулируемого впуска – еще и выиграть в максимальной мощности и тяге. Умеренно длинноходные моторы от этого только выиграли.

В 2000-е в стане двигателей объемом от 2 литров наметился перелом в переходе от «квадратов» к длинноходным конструкциям. И вот вам несколько примеров. При рабочем объеме 2 литра моторы VW серии ЕА888 (стоят на множестве моделей концерна от Skoda Octavia до Audi A5) имеют ход поршня 92,8 мм при диаметре цилиндра 82,5, а 2-литровые моторы Renault серии F4R (более всего известный по Duster) – 93 мм и 82,7 соответственно. Моторы Toyota объемом 1,8 л серии 1ZZ (Corolla, Avensis и др.) – еще более длинноходные, их размерность 91,5х79.

На фото: двигатель Volkswagen Golf GTI

Рабочие обороты таких двигателей заметно уменьшились, особенно у турбонаддувных, снизились и обороты максимальной мощности. А значит и снижение механического КПД уже не столь важно, зато преимущества налицо. По габаритам моторы лишь немного больше «классических» 1,6 из недавнего прошлого, а по тяге и расходу топлива намного превосходят однообъемных предшественников.

В современных моторах пытаются сочетать высокую эффективность работы длинноходных моторов и повышенный механический КПД короткоходных. Так, в ультрасовременном (но тем не менее уже снимаемом с производства) моторе BMW серии N20В20 (стоят на 1-й, 3-й, 5-й сериях, X1 и X3) применяется несимметричная поршневая группа, в которой ось коленчатого вала и ось поршневых пальцев смещены относительно оси цилиндров. Тут используются регулируемый маслонасос, плазменное напыление цилиндров, бездроссельный впуск и прочие технические «фокусы» для снижения механических потерь и сопротивления впуска. Размерность этого длинноходного мотора 90,1х84, и никто не скажет, что у него плохие характеристики хоть в чем-то, кроме надежности.

Дизели

Дизельные моторы, которые в силу особенностей рабочего цикла обычно являются длинноходными и низкооборотными, выиграли вдвойне. Внедрение турбонаддува резко подняло крутящий момент и позволило снизить степень сжатия, а прогресс топливной аппаратуры и поршневой группы – еще и увеличить рабочие обороты.

На фото: двигатель Volkswagen Golf TDI

В итоге дизели превзошли по литровой мощности атмосферные бензиновые моторы, а по крутящему моменту – бензиновые моторы с наддувом. Так, двигатели серии N57 (3-я, 5-я, 7-я серии, X3, X5 и др.) от BMW при диаметре цилиндра 84 мм и ходе поршня 90 мм имеют рабочий объем 2,993 литра, мощность до 381 л. с. и 740 Нм крутящего момента. Средняя скорость поршня при этом – 13,2 метра в секунду.

Оборотная сторона

Конечно же, беспроигрышных лотерей не бывает, и чудесной высокой отдачи добились ценой надежности – тут нет никакого секрета. Старый принцип актуален и поныне: у «сильно длинноходных» моторов высокая средняя скорость поршня увеличивает нагрузку на стенки цилиндра.

Конечно же, материалы становятся лучше, но при сравнении двигателей одной серии с разными параметрами хода поршня и диаметра цилиндра заметно, что длинноходные модели более склонны к износу поршневых колец и задирам цилиндров. И ресурс поршневой у них оказывается существенно ниже, чем у более «квадратных» собратьев.

А вот при сравнении разных моторов все далеко не так однозначно. На моторах с алюминиевым блоком и алюсиловым покрытием стараются снизить нагрузку на стенку цилиндра в том числе и снижением хода поршня, но, как правило, все равно ресурс получается меньше, чем у моторов с чугунными гильзами или блоком.

Мотор Renault-Nissan серии M4R (Qashqai, Fluence и др.), который пришел на смену уже упомянутому чугунному F4R, имеет ход поршня 90,1 мм при диаметре цилиндра 84 – он все еще длинноходный, но ход поршня значительно сократился. Габариты при этом не увеличиваются за счет более тонкостенной конструкции блока цилиндров.

На фото: двигатель Renault Latitude

Современные двигатели не нуждаются в высоких оборотах для достижения высокой мощности, а экономичность и экологичность становятся все важнее. Пусть даже в реальной эксплуатации заявленные характеристики и не подтверждаются… К тому же, можно путем усложнения конструкции обойти множество ограничений, которые десятки лет заставляли делать выбор между мощностью и экономичностью моторов.

Короткоходные «крутильные» моторы просто вымирают, им нет места в новом мире. Даже в Формуле-1 отказались от экстремальных конструкций с рабочими оборотами за 19 тысяч и соотношением диаметра цилиндра и хода поршня больше 2,4 к 1. Конечно, для фанатов и гоночных серий выпуск подобной техники сохранится, но в практическом плане смысла в ней уже нет. Победа длинноходных конструкций, за редким исключением, фактически состоялась.

Одним из немногих «оплотов короткоходности» до недавнего времени оставались атмосферные V6 и V8 от Mercedes-Benz. Так, моторы серии М272 (E-Klasse W211, M-Class W164 и др.) – откровенно короткоходные во всех вариантах исполнения. Например, у 3-литровой версии соотношение хода к диаметру будет 82,1 к 88. Как и их предки в лице М104, так и их наследники вплоть до М276, они были олицетворением успешных короткоходных моторов. Компания не стремилась к излишней компактности моторов, места было достаточно, а момента у двигателей объемом 3-3,5 литра и так хватало с запасом. Городить длинноходную конструкцию не было смысла.

Но новое поколение двигателей AMG серий М133/М176 с наддувом стали длинноходными – 83х92 мм, как и перспективная рядная шестерка 3,0 с наддувом серии М256 – 83х92,4 мм.

На фото: двигатель Mercedes-AMG CLA 45 4MATIC

Из «могикан» остаются разве что моторы GM, их блок V8 6,2 Vortec/L86/LT1 все еще не стремится к компактности, имея размерность 103,25х92 мм, и даже компрессорная версия LT4 сохраняет ту же размерность блока. Но это, скорее всего, тоже ненадолго.

Конец спорам

Даунсайз, наддув, непосредственный впрыск, гладкая моментная характеристика, высокий крутящий момент, регулируемый ГРМ и продвинутые трансмиссии сотворили маленькое чудо. Споры «длинноходный или короткоходный» уже более не актуальны.

Моторы вдруг прибавили в литровой мощности до границ, ранее считавшихся возможными только для специально подготовленных гоночных моторов. Увидев цифры в 120-150 л. с. с литра объема, мы уже не удивляемся, и даже 200 л. с. на литр кажутся вполне реальными, а «смешной» паспортный расход топлива для мощной и тяжелой машины кажется вполне реальным. Дизельные двигатели из «гадких утят» превратились в прекрасных лебедей с литровой мощностью даже большей, чем у бензиновых двигателей.

Во многом все это, плюс уменьшение габаритов и веса моторов, стало возможным благодаря длинноходной конструкции. Окончательно оформившийся тренд вряд ли переломится, особенно с учетом прогнозируемого вытеснения ДВС электромоторами и разнообразными «удлинителями дистанции».

Юлиюс Мацкерле (Julius Mackerle)
Источник: «Современный экономичный автомобиль»
41043 2

Объём камеры сгорания в известной степени указывает на количество вводимой теплоты. Теплотворная способность поступающего заряда в бензиновом двигателе определена соотношением воздуха и топлива, близким к стехиометрическому. В дизель подаётся чистый воздух, а подача топлива ограничена степенью неполноты сгорания, при которой в отработавших газах появляется дым. Поэтому связь количества вводимой теплоты с объёмом камеры сгорания достаточно очевидна .

Наименьшим отношением поверхности к заданному объёму обладает сфера. Тепло в окружающее пространство отводится поверхностью, поэтому масса, имеющая форму шара, охлаждается в наименьшей степени. Эти очевидные соотношения учитываются при проектировании камеры сгорания. Следует, однако, иметь в виду геометрическое подобие деталей двигателей разных размеров. Как известно, объём сферы равен 4/3∙π∙R3, а её поверхность — 4∙π∙R2, и, таким образом, объём с ростом диаметра увеличивается быстрее, чем поверхность, и, следовательно, сфера большего диаметра будет иметь меньшую величину отношения поверхности к объёму. Если поверхности сферы разного диаметра имеют одинаковые перепады температур и одинаковые коэффициенты теплоотдачи α, то большая сфера будет охлаждаться медленнее.

Двигатели геометрически подобны, когда они имеют одинаковую конструкцию, но отличаются размерами. Если первый двигатель имеет диаметр цилиндра, например, равный единице, а у второго двигателя он в 2 раза больше, то все линейные размеры второго двигателя будут в 2 раза, поверхности — в 4 раза, а объёмы — в 8 раз больше, чем у первого двигателя. Полного геометрического подобия достичь, однако, не удаётся, так как размеры, например, свечей зажигания и топливных форсунок одинаковы у двигателей с разными размерами диаметра цилиндра.

Из геометрического подобия можно сделать тот вывод, что больший по размерам цилиндр имеет и более приемлемое отношение поверхности к объёму, поэтому его тепловые потери при охлаждении поверхности в одинаковых условиях будут меньше.

При определении мощности нужно, однако, учитывать некоторые ограничивающие факторы. Мощность двигателя зависит не только от размеров, т. е. объёма цилиндров двигателя, но и от частоты его вращения, а также среднего эффективного давления. Частота вращения двигателя ограничена максимальной средней скоростью поршня, массой и совершенством конструкции кривошипно-шатунного механизма. Максимальные средние скорости поршня бензиновых двигателей лежат в пределах 10—22 м/с. У двигателей легковых автомобилей максимальное значение средней скорости поршня достигает 15 м/с, а значения величины среднего эффективного давления при полной нагрузке близки к 1 МПа.

Рабочий объём двигателя и его размеры определяют не только геометрические факторы. Например, толщина стенок задана технологией, а не нагрузкой на них. Теплопередача через стенки зависит не от их толщины, а от теплопроводности их материала, коэффициентов теплоотдачи на поверхностях стенок, перепада температур и т. д. Колебания давления газа в трубопроводах распространяются со скоростью звука независимо от размеров двигателя, зазоры в подшипниках определяются свойствами масляной пленки и т. д. Некоторые выводы относительно влияния геометрических размеров цилиндров, тем не менее, необходимо сделать.

Преимущества и недостатки цилиндра с большим рабочим объёмом

Цилиндр большего рабочего объёма имеет меньшие относительные потери теплоты в стенки. Это хорошо подтверждается примерами стационарных дизелей с большими рабочими объёмами цилиндров, которые имеют очень низкие удельные расходы топлива. В отношении легковых автомобилей это положение, однако, подтверждается не всегда.

Анализ уравнения мощности двигателя показывает, что наибольшая мощность двигателя может быть достигнута при небольшой величине хода поршня.

Средняя скорость поршня может быть вычислена как

Cп = S∙n/30 (м/с),

где S — ход поршня, м; n — частота вращения, мин-1.

При ограничении средней скорости поршня Cп частота вращения может быть тем выше, чем меньше ход поршня. Уравнение мощности четырёхтактного двигателя имеет вид

Ne = Vh∙pe∙n/120 (кВт),

где Vh — объём двигателя, дм3; n — частота вращения, мин-1; pe — среднее эффективное давление, МПа.

Следовательно, мощность двигателя прямо пропорциональна частоте его вращения и рабочему объёму. Тем самым к двигателю одновременно предъявляются противоположные требования — большой рабочий объём цилиндра и короткий ход. Компромиссное решение состоит в применении большего числа цилиндров.

Наиболее предпочтительный рабочий объём одного цилиндра высокооборотного бензинового двигателя составляет 300—500 см3. Двигатель с малым числом таких цилиндров плохо уравновешен, а с большим — имеет значительные механические потери и обладает поэтому повышенными удельными расходами топлива. Восьмицилиндровый двигатель рабочим объемом 3000 см3 имеет меньший удельный расход топлива, чем двенадцатицилиндровый с таким же рабочим объёмом.

Для достижения малого расхода топлива целесообразно применять двигатели с малым числом цилиндров. Однако одноцилиндровый двигатель с большим рабочим объёмом не находит применения в автомобилях, поскольку его относительная масса велика, а уравновешивание возможно лишь при использовании специальных механизмов, что ведёт к дополнительному увеличению его массы, размеров и стоимости. Кроме того, большая неравномерность крутящего момента одноцилиндрового двигателя неприемлема для трансмиссий автомобиля.

Наименьшее число цилиндров у современного автомобильного двигателя равно двум. Такие двигатели с успехом применяют в автомобилях особо малого класса («Ситроен 2CV», «Фиат 126»). Сточки зрения уравновешенности, следующим в ряду целесообразного применения стоит четырёхцилиндровый двигатель, однако в настоящее время начинают применять и трёхцилиндровые двигатели с небольшим рабочим объёмом цилиндров, поскольку они позволяют получить малые расходы топлива. Кроме того, меньшее число цилиндров упрощает и удешевляет вспомогательное оборудование двигателя, так как сокращается число свечей зажигания, форсунок, плунжерных пар топливного насоса высокого давления. При поперечном расположении в автомобиле такой двигатель имеет меньшую длину и не ограничивает поворот управляемых колёс.

Трёхцилиндровый двигатель позволяет использовать унифицированные с четырёхцилиндровым основные детали: гильзу цилиндра, поршневой комплект, шатунный комплект, клапанный механизм. Такое же решение возможно и для пятицилиндрового двигателя, что позволяет при необходимости увеличения мощностного ряда вверх от базового четырёхцилиндрового двигателя избежать перехода на более длинный шестицилиндровый.

В дизелях помимо уменьшения потерь теплоты при сгорании большой рабочий объёмом цилиндра даёт возможность получить более компактную камеру сгорания, в которой при умеренных степенях сжатия создаются более высокие температуры к моменту впрыска топлива. У цилиндра с большим рабочим объёмом можно использовать форсунки с большим числом сопловых отверстий, обладающих меньшей чувствительностью к нагарообразованию.

Отношение хода поршня к диаметру цилиндра

Частное от деления величины хода поршня S на величину диаметра цилиндра D представляет собой широко употребляемое значение отношения S/D. Точка зрения на величину хода поршня в течение развития двигателестроения менялась.

На начальном этапе автомобильного двигателестроения действовала так называемая налоговая формула, на основе которой взимаемый налог на мощность двигателя рассчитывался с учетом числа и диаметра D его цилиндров. Классификация двигателей осуществлялась также в соответствии с этой формулой. Поэтому отдавалось предпочтение двигателям с большой величиной хода поршня с тем, чтобы увеличить мощность двигателя в рамках данной налоговой категории. Мощность двигателя росла, но увеличение частоты вращения было ограничено допустимой средней скоростью поршня. Поскольку механизм газораспределения двигателя в этот период не был рассчитан на высокую оборотность, то ограничение частоты вращения скоростью поршня не имело значения.

Как только описанная налоговая формула была упразднена, и классификация двигателей стада проводится в соответствии с рабочим объёмом цилиндра, ход поршня начал резко уменьшаться, что позволило увеличить частоту вращения и, тем самым, мощность двигателя. В цилиндрах большего диаметра стало возможным применение клапанов больших размеров. Поэтому были созданы короткоходные двигатели с отношением S/D, достигающим 0,5. Усовершенствование механизма газораспределения, особенно при использовании четырех клапанов в цилиндре, позволило довести номинальную частоту вращения двигателя до 10000 мин-1 и более, вследствие чего удельная мощность быстро возросла.

В настоящее время большое внимание уделяется уменьшению расхода топлива. Проведённые с этой целью исследования влияния S/D показали, что короткоходные двигатели обладают повышенным удельным расходом топлива. Это вызвано большой поверхностью камеры сгорания, а также снижением механического КПД двигателя из-за относительно большой величины поступательно движущихся масс деталей шатунно-поршневого комплекта и роста потерь на приводы вспомогательного оборудования. При очень коротком ходе нужно удлинять шатун с тем, чтобы нижняя часть юбки поршня не задевалась противовесами коленчатого вала. Масса поршня при уменьшении его хода мало уменьшилась и при использовании выемок и вырезов на юбке поршня. Для снижения выброса токсичных веществ в отработавших газах целесообразнее применять двигатели с компактной камерой сгорания и с более длинным ходом поршня. Поэтому в настоящее время от двигателей с очень низким отношением S/D отказываются.

Рис. 1

Влияние отношения хода поршня S к диаметру цилиндра D на среднее эффективное давление pe гоночных автомобилей

Зависимость среднего эффективного давления от отношения S/D у лучших гоночных двигателей, где четко видно снижение pe при малых отношениях S/D, приведена на рис. 1. В настоящее время более выгодным считается отношение S/D, равное или несколько большее единицы. Хотя при коротком ходе поршня отношение поверхности цилиндра к его рабочему объёму при положении поршня в НМТ меньше, чем у длинноходных двигателей, нижняя зона цилиндра не так важна для отвода теплоты, поскольку температура газов уже заметно падает.

Длинноходный двигатель имеет более выгодное отношение охлаждаемой поверхности к объёму камеры сгорания при положении поршня в ВМТ, что более важно, так как в этот период цикла температура газов, определяющая потери теплоты, наиболее высока. Сокращение поверхности теплоотдачи в этой фазе процесса расширения уменьшает тепловые потери и улучшает индикаторный КПД двигателя.

Последнее обновление 02.03.2012
Опубликовано 27.09.2011

Каждый тип ДВС хорош по-своему, хотя идеала нет

Самые распространенные типы двигателей внутреннего сгорания в мире – это четырехцилиндровый рядный, четырехцилиндровый оппозитный, рядный шестицилиндровый, V6 и V8 – имеют свои плюсы и минусы. Вот все, что вам нужно знать о них, в одной удобной подборке…

Смотрите также: Двигатели, в которых могут загнуться клапаны: зачем они нужны

Какой мотор сделает больше мощности: 4,0-литровый V6 или 4,0-литровый V8? Ответ не так прост и очевиден. При обсуждении различных двигателей их тип не является наиболее серьезным фактором, влияющим на то, сколько энергии они произведут. Приложите к созданию инженерную изобретательность, и ваш четырехцилиндровый двигатель сможет получить столько же мощности, сколько среднестатистический V12. Так что же заставляет производителей выбирать различные компоновки двигателей? Вот преимущества и недостатки каждого из вариантов движков.

Рядные четырехцилиндровые силовые агрегаты

Начнем с одного из самых распространенных двигателей – рядного четырехцилиндрового. Есть причина, по которой он так распространен. В основном потому, что это так просто: один блок цилиндров, одна головка цилиндров и один клапанный механизм. Вот все, что вам нужно о нем знать:

Преимущества:

Четырехцилиндровый рядный двигатель негабаритен и компактен, значит, его легко расположить под капотом практически любого автомобиля;

Он также немного весит сам по себе, а за счет того, что на этот тип мотора ставится всего лишь один выпускной коллектор, вес дополнительно уменьшается;

Поскольку у него только одна головка цилиндров, это означает наличие меньшего количества движимых частей по сравнению с моторами с развалом. Это означает меньшие энергопотери и уменьшает вероятность неисправностей;

Двигатель хорошо сбалансирован, поскольку два внешних поршня движутся в противоположном направлении от внутренних двух поршней (см. рисунок выше);

Четырехцилиндровые двигатели просты в обслуживании и починке. Головка блока – это высшая точка, которая делает доступ к свечам и приводу клапанов незатруднительным;

Четырехцилиндровые двигатели требуют менее высоких производственных затрат.

Минусы:

Несмотря на то что первичные силы сбалансированы идеально, этого нельзя сказать о так называемых вторичных силах, действующих на работу мотора, что в конечном счете ограничивает размеры двигателя;

Рядные четверки редко превышают объем 2,5 литра;

В больших по объему четырехцилиндровых двигателях возникает необходимость балансировки валов для снижения уровня вибрации из-за тех самых вторичных сил;

Высокий центр тяжести по сравнению с некоторыми компоновками оппозитных H4;

Не такие «неубиваемые», как некоторые версии V6 и V8.

Смотрите также: Типы расположения двигателей автомобилей | Интересные факты

Вот краткое видео, объясняющее принцип работы четырехцилиндрового двигателя:

Горизонтально-оппозитный

С точки зрения производительности существует не так много вариантов, столь же привлекательных, как двигатель с горизонтально уложенными противоположно расположенными цилиндрами. Оппозитный силовой агрегат не столь частый гость под капотом автомобилей, но с технической точки зрения это логичный выбор для вашего гоночного автомобиля.

Преимущества:

Первичные и вторичные силы хорошо сбалансированы. Это плавный в работе двигатель;

Баланс позволяет снизить вес коленчатого вала, что уменьшает инерционные потери от вращения;

Низкий центр тяжести обеспечивает лучшую управляемость автомобиля.

Минусы:

Размер: это очень широкие двигатели;

Оппозитные двигатели когда-то использовались в Формуле 1 именно из-за своих преимуществ в производительности, но ввиду их большой ширины они препятствовали работе с воздушным потоком вокруг кузова болида и с тех пор больше не используются;

Сложность: две головки цилиндров системы привода клапанов;

Во время работы наблюдается дисбаланс в плоскости из-за смещения поршней по отношению к коленчатому валу;

Обслуживание может быть сложным, если под капотом теснота.

Рядный шестицилиндровый

Объект привязанности инженеров, рядная шестерка является результатом прикрепления двух дополнительных цилиндров к рядному четырехцилиндровому двигателю. BMW любит их, Toyota частенько использовала такие двигатели тоже, сделав один из самых известных своих моторов – 2JZ. Так что такого особенного в этой шестерке?

Преимущества:

Рядная шестерка изначально сбалансирована;

Компоновка в сочетании с порядком воспламенения смеси в цилиндрах создает практически самый «гладкий» в работе мотор. В плане уменьшения вибраций круче могут быть только V12 и оппозитные 12-цилиндровые моторы, которые являются следующим шагом в эволюции, так как они представляют собой сдвоенные шестицилиндровые моторы, соединенные вместе;

Но по сравнению с «V»-образными компоновками производственные затраты на один блок со всеми цилиндрами в одной плоскости весомо снижаются;

Простой дизайн, легко работать с двигателем и чинить его. Также как с рядным четырехцилиндровым мотором.

Минусы:

Капот должен соответствовать длине силового агрегата, автомобиль должен быть средних размеров;

Не идеальное решение для переднеприводных автомобилей;

Высокий центр тяжести, особенно в сравнении с оппозитными моторами;

Конструкция не настолько жесткая, как «V»-образные двигатели, так как мотор – длинный и достаточно узкий.

Вот краткое видеообъяснение принципа работы шестицилиндрового мотора:

V6

Теперь разрежьте эту прямую «шестерку» пополам и соедините два блока цилиндров общим коленвалом. Думаете, инженеры здесь перемудрили? Зачем делать «V»-образник, если уже есть отличный рядный силовой агрегат? Ну, для автомобилей Формулы 1 он подходит, значит, у него есть свои преимущества.

Преимущества:

Они компактны и могут легко использоваться как для переднеприводных, так и для заднеприводных автомобилей;

Компоновка позволяет сделать более объемные версии, чем есть у четырехцилиндровых двигателей, что типично означает больше мощности;

Это жесткая конструкция во всех смыслах;

Формула 1 решила использовать V6, а не рядные четырехцилиндровые моторы в сезоне 2014 года, потому что они хотели интегрировать двигатель в качестве дополнительного ребра жесткости в конструкции автомобиля.

Минусы:

2 головки цилиндров означают добавление к стоимости, сложности и весу;

Дополнительные инерция и трение (больше движимых частей);

Высокий центр тяжести против плоских оппозитных двигателей;

Стоимость часто больше, чем у рядных четырехцилиндровых движков;

Дисбаланс требует дополнительного веса на противовесах коленчатого вала, разгружая коренные подшипники от центробежных сил инерции первого порядка неуравновешенных масс;

Два выпускных коллектора также означают дополнительный вес.

V8

Когда вы добавляете цилиндр на каждую из сторон блоков V6, вы получаете сердце американского масклкара… – V8. Он может издавать утонченное утробное ворчание, но так ли он хорош в реальности? Вот его главные плюсы и минусы.

Смотрите также: Почему двигатели V4 редко встречаются в автомобилях?

Преимущества:

Размеры (короткий по длине);

Хороший баланс, в зависимости от типа коленчатого вала и порядка воспламенения горючей смеси (flatplane vs crossplane);

Жесткая конструкция;

Позволяет сделать моторы с большими объемами.

Минусы:

Как и V6, вес двигателя V8 может быть достаточно высоким, и он явно будет весить больше шестицилиндрового движка;

Дополнительные инерция и трение (больше движимых частей);

Стоимость и сложность будут выше;

Более высокий центр тяжести против оппозитного;

Большие размеры, как правило, ограничивают использование двигателя в транспортных средствах компоновкой привода RWD/AWD. Переднеприводные варианты есть, но очень редки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *