Аэродинамика автомобилей

Короли аэродинамики в автомире.

Аэродинамика – это загадка мироздания, которую, конечно, уже давно разгадали ученые, конструкторы и инженеры автопромышленности. С самого начала появления автомобилей в нашем мире аэродинамика идет с ними бок о бок. Да, было время, когда автопроизводители забыли про важность аэродинамики. Особенно когда топливо стоило дешевле, чем алкоголь. Но сегодня, когда бензин и дизельное топливо не радуют своими ценниками на АЗС многих стран, физика твердого тела, движущегося в воздухе, имеет фундаментальное значение для ускорения и повышения эффективности автомобилей.

Напомним, что коэффициент аэродинамического сопротивления воздуха влияет на то, как автомобиль потребляет топливо на скорости. Это же касается и электрических автомобилей, для которых аэродинамика играет первостепенную роль, поскольку чем меньше сопротивление воздуха, тем меньше расходуется электричество для питания электромотора.

Благодаря развитию аэродинамики в автопромышленности многие автомобили стали обтекаемы по сравнению со своими предшественниками. Но в истории автомира было немало примеров, когда автомобильные компании пытались экспериментировать с необычными аэродинамическими формами. К сожалению, в большинстве случаев потребители не оценили то, что получалось, по причине того, что форма не соответствовала духу времени.

Мы собрали для вас самые интересные и необычные автомобили, имеющие странные аэродинамические кузова. Некоторые проекты неудачны, некоторые вполне удивляют даже сегодня.

ALFA 40-60 HP Aerodinamica Castagna

Первым в истории шоу-каром и первой попыткой применить принципы аэродинамики к автомобилям был аэродинамический автомобиль ALFA, выпущенный в 1914 году (в те годы марка еще не называлась Alfa Romeo).

Необычные автомобили, которые приехали на техосмотр

Автомобиль был создан итальянской компанией Carrozzeria Castagna для графа Марио Рикотти. Кузов машины был выполнен в виде капли и опирался на классическую раму.

Благодаря алюминиевому кузову и отсутствию капота максимальная скорость этого концепта составляла 120 км/ч. Когда машина пошла в серийный выпуск, скорость уже составляла 139 км/ч. К сожалению, точное значение аэродинамического сопротивления воздуха этого автомобиля неизвестно.

Rumpler Drop Car

На немецком автосалоне 1921 года в Берлине австрийский дизайнер Эдмунд Румплер представил свой необычный автомобиль, получивший имя «Drop Car». Коэффициент лобового сопротивления этого автомобиля составлял 0.28 cd. Для того времени это не просто сенсация. Вы не поверите, но всего несколько лет назад у многих современных автомобилей этот коэффициент был хуже!

К сожалению, значение аэродинамического сопротивления воздуха не гарантировало успех автомобиля. Спрос на машину был маленьким. Всего было произведено сто автомобилей. По всей видимости, людей напугала футуристическая внешность автомобиля.

Сегодня в мире сохранилось всего два таких автомобиля, один из которых находится в немецком музее в Мюнхене.

Tatra 87

Представленная в 1936 году, Tatra 87 сегодня является иконой дизайна. Благодаря хорошо спроектированной задней части машины значение аэродинамического сопротивления составляет 0,36. По традиции тех лет чешский автопроизводитель установил двигатель в заднюю часть машины.

Высокая скорость и низкое потребление топлива были сильной стороной Татры. Для того времени это был идеальный автомобиль для шоссе. К 1950 году было произведено 3000 автомобилей.

Saab 92

Когда Saab проектировал первый автомобиль, им пригодился опыт авиастроения, где аэродинамика с самого начала играет важную роль. В 1949 году компания выпустила модель Saab 92, с превосходным коэффициентом аэродинамического сопротивления воздуха, составляющим 0,30.

Смотрите также: Вот насколько тратится больше топлива из-за груза на крыше автомобиля

Этот автомобиль легко преодолевал скорость в 100 км/ч, несмотря на небольшую мощность двухтактного 25-сильного двигателя.

Citroën DS

Впервые представленный на Парижском автосалоне в 1955 году, Citroën DS выглядел для многих посетителей как космический корабль пришельцев, приземлившийся на Землю.

Чтобы подтвердить уникальность автомобиля, в дополнение к инновационной технологии (машина имела гидропневматическую подвеску!) дизайнеры создали модели футуристический аэродинамический дизайн, коэффициент сопротивления воздуха которого составлял 0,37. Это выдающийся результат по сравнению с конкурентами того времени.

Alfa Romeo Giulia

Кто-то может не поверить, что этот автомобиль имеет отличные аэродинамические характеристики, так как внешность классической Alfa Romeo Giulia представлена в виде квадрата. Но легендарная Alfa Romeo Giulia 1962 года показала в аэродинамической трубе уникальные результаты. Коэффициент сопротивления составлял всего 0,34, что ниже даже у более бегло выглядящего NSU Ro 80 (0,355), который вышел на рынок только пять лет спустя.

Citroën GS

Вот еще один автомобиль, который при первом взгляде также не внушает доверия в аэродинамическое чудо, – это Citroën GS. На его премьере в 1970 году производитель объявил, что машина имеет коэффициент сопротивления воздуха всего 0,31 cd.

Семейный седан имел много места в комфортном салоне и оснащался гидропневматической подвеской. Было выпущено более 2,5 миллиона автомобилей. Выпуск продолжался до 1986 года.

Audi 80

Компания Audi, начиная с 1980-х, начала устанавливать свои высокие стандарты аэродинамических характеристик, навязав другим автопроизводителям новую планку. Так, сначала была представлена Audi 100 C3, которая в аэродинамической трубе показала коэффициент сопротивления воздуха 0,30 cd, а затем в 1986 году была представлена Audi 80 B3 («бочка»), показавшая коэффициент сопротивления 0,29. Для справки: уже в 1987 году новая модель Opel Omega A имела коэффициент аэродинамического сопротивления воздуха 0,28. 1980-е годы можно смело назвать десятилетием аэродинамики в автопромышленности.

EV1 General Motors

Хотя компания General Motors официально и не продавала свою модель EV1, а только сдавала в аренду, этот автомобиль написал в автопромышленности свою историю. Этот автомобиль вместил в себя как и разочарования (проект был сырой, и машина была ненадежна), так и позитив. Этот автомобиль, начиная с 1996 года, стал первым электромобилем в автопромышленности. Всего было произведено 1000 автомобилей.

Смотрите также: 11 GIF фото которые демонстрируют как работает аэродинамика в автомобилях

Машина оснащалась простыми свинцовыми или никель-металлогидридными батареями. Но, несмотря на это, запас хода у электрического транспортного средства был потрясающим – 230 км. И все это благодаря конструкции кузова, который имел невероятный коэффициент сопротивления воздуха, составляющий всего 0,19 cd.

Tesla Model S

Tesla Model S представляет собой электрический автомобиль, который изменил историю автопромышленности, направив весь автомир развиваться по новому пути. И все это благодаря дальновидности главы компании Илона Маска и дизайнера Франца фон Хольцхаузена, который разработал пятиместный седан с коэффициентом аэродинамического сопротивления воздуха 0,24.

Для сравнения: в 2012 году это значение представляло собой общий мировой рекорд для массовых серийных автомобилей. Такой коэффициент имели автомобили Mercedes S-класса. Благодаря потрясающей форме кузова автомобили Тесла в идеальных условиях могут проехать 400-500 километров.

Mercedes-Benz А-Класс седан

К концу нынешнего десятилетия (на данный момент) самым аэродинамическим автомобилем на рынке является седан Mercedes A-класса (модельный ряд 2018 года) с исключительной аэродинамикой (коэффициент 0,22 cd).

Это стало возможным благодаря комплексной герметизации кузова автомобиля (включая герметизацию фар), включая полную герметизацию днища автомобиля. В том числе полностью изолирован моторный отсек, детали задней подвески и многое другое. Спойлеры колес сзади и спереди были специально оптимизированы, чтобы колеса могли вращаться с минимальными потерями.

Виктор Чебыкин

В статье приводится метод приблизительной оценки обтекаемости овалоидов и овалоидоподобных тел вращения. Обтекаемость различных форм определяется по лобовому сопротивлению давления.

Введение

Продолжая изучение циклоидального овала (циклопа), описанного в статьях и , было интересно оценить аэродинамические (гидродинамические) качества его формы. Учитывая то, что состоит он из четырех брахистохрон — кривых скорейшего спуска, возникло предположение: не является ли его форма оптимальной с точки зрения аэродинамики? Оказалось, что не является. Когда это выяснилось, можно было закрыть тему и поставить точку — не все коту (циклопу) масленица, но помешал этому возникший вопрос: а какие же геометрические формы аэродинамически оптимальны? Другими словами — какие из них являются самыми обтекаемыми? На память приходили эллипсоиды и каплеобразные формы, якобы самые обтекаемые.

Создание банка кривых

Для сравнения свойств кривых необходимо провести их селекцию, то есть выбрать наиболее подходящие, затем привести их к одному масштабу и соотношению размеров осей. За эталон масштаба и соотношения осей принят циклоидальный овал с радиусом производящей окружности, равным, например, 20 мм. Соотношение его осей, как известно, равно . Всего было построено и внесено в банк более двух десятков кривых — это известные, малоизвестные и совсем неизвестные кривые. Какова геометрия последних — тема отдельного описания, на котором останавливаться пока не будем.

Создание 3D­моделей

Для придания более стремительной формы отмасштабируем все отобранные кривые до соотношения осей, равного 2p, и операцией вращения создадим 3D­модели овалоидов и овалоидоподобных тел вращения. Часть их показана на рис. 1.

Рис. 1. Овалоиды и овалоидоподобные тела вращения

Для проверки аэродинамических характеристик исследуемой кривых неплохо было бы иметь соответствующую трубу и изготовить модели тел вращения. Второй вариант — воспользоваться расчетным модулем, имитирующим аэродинамическую трубу.

Поскольку ни того, ни другого у нас нет, ограничимся расчетом лобового сопротивления давления.

Расчет лобового сопротивления давления и коэффициентов лобового сопротивления давления (Клсд)

Это сопротивление будем определять по участкам, на которые разобьем исследуемые тела. При этом не учитываем сопротивление трения и завихрений. Скорость движения и вязкость среды также не учитываем, поскольку они одни и те же для исследуемых тел. Значение сопротивления определяем по формуле:

, (1)

где: S — проекция боковой поверхности участка тела вращения на плоскость, перпендикулярную направлению движения;

q — давление среды на единицу площади в плоскости, перпендикулярной направлению движения, для упрощения расчетов принимаем равным 1;

α — средний угол падения потока по участку.

Полное лобовое сопротивление давления тела получаем, суммируя сопротивление отдельных его участков. На рис. 2 показаны графики распределения сопротивления давления по участкам некоторых овалоидов и тел вращения. Следует обратить внимание на большое различие графиков, несмотря на кажущуюся схожесть соответствующих тел (см. рис. 1).

Коэффициенты лобового сопротивления давления определяем как отношение лобового сопротивления давления тела к лобовому сопротивлению давления прямого кругового цилиндра диаметром, равным диаметру миделя тела. В приведенной таблице показаны значения коэффициентов Клсд некоторых овалоидов и тел вращения с соотношением осей, равным 2p (имена кривых: Смерч, Торнадо, Циклоп, Буря, Цикада, Цик­лон — предложены автором и к метеорологии и зоологии отношения не имеют. — Прим. авт. ).

Рис. 2. Лобовое сопротивление давления тел вращения

Коэффициенты Клсд

Наименьшим коэффициентом в своих группах обладают Смерч и Буря, однако из­за большой кривизны в районе миделя применение их на больших скоростях будет приводить к срыву потока и завихрениям, что повысит общее лобовое сопротивление. Для малых скоростей они оптимальны. Для высоких скоростей подойдут кривые, находящиеся в линейках Смерч — Торнадо и Буря — Цикада, которые имеют в районе миделя меньшую кривизну. В таблицу эти промежуточные по коэффициенту Клсд кривые не включены, так как их немало. На рис. 1 овалоиды Смерч, Торнадо и тела вращения Буря, Цикада — желтого цвета.

В таблицу также включен Клсд кривой U­XXI. Это не что иное, как контур лобовой части легкого корпуса немецкой подводной лодки U­Boot­Klasse XXI (1943). О высоких гидродинамических качествах лодки говорится в : «Большое внимание было уделено гидродинамическим качествам. Форма корпуса, обеспечивающая малое сопротивление в подводном положении, но, в то же время, позволяющая сохранять и надводные мореходные качества…» Для того чтобы проверить, так ли это, были проведены необходимые измерения, масштабирование и расчеты. Отношение длины лобовой части корпуса к радиусу миделя у нее составляло 3p, а отношение длины хвостовой части к радиусу миделя — 4p, что вполне логично с точки зрения гидродинамики. Тем не менее форма лобовой части выбрана (IMHO) не лучшая. Это выяснилось при масштабировании ее до 2p и расчете лобового сопротивления давления и Клсд (см. таблицу). И это — лучшая лодка 1940­х годов?!

Выводы:

  1. Приблизительную оценку обтекаемости тел (не обязательно тел вращения) можно выполнить расчетом их лобового сопротивления давления.
  2. Определены наиболее обтекаемые формы овалоидов и овалоидоподобных тел вращения.
  3. Определена зависимость обтекаемости овалоидов от при­тупления лобовой части и области миделевого сечения, найдены экстремальные значения параметров притупления (данные в статье не приводятся).
  4. Примененная методика позволила проверить гидродинамические качества ранее спроектированного и изготовленного технического объекта. 

Библиографический список:

  1. Чебыкин В. Классификация и идентификация эллипсовидных овальных кривых // САПР и графика. 2014. № 3. С. 92­94.
  2. Чебыкин В. Циклоидальный и псевдоциклоидальные овалы // САПР и графика. 2014. № 11. С. 105­106.
  3. Антонов А.М. Германские электролодки XXI и XXIII серий. Санкт­Петербург. Гангут, 1997. 48 с.

САПР и графика 7`2015

Все явления, происходящие во время движения автомобиля, в очень большой мере зависят от его общих размеров, веса, формы, положения центра тяжести, расположения кузова, т.е. от его общего строения или, как говорят, компоновки. Получить представление об этих общих, исходных данных по автомобилю удобнее, когда автомобиль стоит.

Рис. Основные размеры автомобиля дают первоначальное представление о его компоновке.

Посмотрим на автомобиль сбоку. Чтобы нарисовать или начертить его, нужно было бы прежде всего наметить несколько основных размеров:

  • длину и высоту автомобиля
  • продольное расстояние между осями колес (так называемую колесную базу или просто базу)
  • просвет между автомобилем и дорогой
  • передний и задний свесы, т. е. расстояния от оси передних или задних колес до, соответственно, переднего или заднего конца (буфера) автомобиля

Если смотреть на автомобиль спереди, сзади и сверху — главными размерами являются ширина автомобиля, колея передних и задних колес, т. е. расстояния между серединами шин одной оси.

Габаритными размерами называют крайние, самые большие размеры автомобиля по длине, ширине и высоте.

Отечественные легковые и грузовые автомобили различны по компоновке. Чем современнее автомобиль, тем большую часть его общей длины занимает пассажирское помещение или платформа для груза, тем больше подвинуты эти полезные площади автомобиля вперед. Отношение базы автомобиля и его высоты к длине становится все меньшим, а полезная длина, используемая по прямому назначению (для пассажиров, багажа или груза), все больше.

Отношение полезной длины легкового автомобиля Lк к его общей длине L1 или полезной площади платформы грузового автомобиля Sк к его общей площади S1 называют показателем использования габарита n (греческая буква «эта» с индексами «дл» — длина или «пл» — площадь):

nдл = Lк/L1
nпл = Sк/S1

Чем больше показатель n, тем совершеннее компоновка автомобиля.

Прежде чем поставить автомобиль на весы, нужно определить, в каком весовом состоянии он находится. Если все механизмы автомобиля заполнены смазкой и другими жидкостями (вода, жидкости для амортизаторов и тормозов и т. д.), автомобиль укомплектован запасным колесом и набором инструмента, а бак наполнен топливом, то вес такого автомобиля называют весом в снаряженном состоянии или собственным весом.

Если автомобиль не заправлен бензином, водой, маслом и другими жидкостями, вес его называют сухим. Сухой вес определяет количество металла и других материалов в конструкции автомобиля, а также важен с точки зрения транспортировки автомобиля (на железнодорожной платформе или краном). Иногда сухим весом называют такой вес, когда с автомобиля сняты также запасное колесо и инструмент.

Если автомобиль — с водителем, пассажирами (по числу мест в кузове) и грузом, его вес называют полным.

Когда взвешивают автомобиль с нагрузкой, т. е. когда определяют полный вес, загружают кузов мешками с песком или чугунными болванками, причем вес пассажира принимают равным 75 кг.

Рис. Развитие компоновки легкового автомобиля.

Рис. Автомобили АМО-3 и ГАЗ-51А имеют кузова одинаковой длины, но у ГАЗ-51А кабина сдвинута вперед, поэтому база короче, чем у АМО-3, на 510 мм, длина — на 425 мм.

Отношение веса полезной нагрузки Ge к собственному весу автомобиля G0 называют удельной грузоподъемностью автомобиля nг:

nг = Ge/G0

Удельная грузоподъемность грузовых автомобилей близка к единице, т. е. автомобиль весит примерно столько же, сколько он может перевезти на себе. У легковых автомобилей этот показатель колеблется между 0,20 и 0,40, так как пассажиры размещаются в кузове свободно, причем у маленьких автомобилей (более легких, с тесным кузовом) показатель выше, чем у больших.

Так как мы рассматриваем автомобиль в движении, из перечисленных весовых состояний в расчет надо принять только полный вес автомобиля. Ведь автомобиль в снаряженном состоянии (без водителя и нагрузки) и, тем более, в состоянии, соответствующем «сухому весу», не может двигаться. Но в дополнение к полному весу в отдельных случаях принимают весовое состояние автомобиля, которое условно называют ходовым, когда на автомобиле находится водитель, но нет ни пассажиров, ни груза. Автомобиль может передвигаться, но он не загружен.

Рис. Так взвешивают автомобиль.

Для взвешивания автомобиль вкатывают на большие весы либо целиком, либо по очереди передними и задними колесами. Во втором случае можно, сложив два результата взвешиваний, получить вес автомобиля и одновременно узнать, какая часть веса приходится на передние колеса и какая на задние, т. е., каково распределение веса по колесам у данного автомобиля, каков передний и задний осевой вес и какова нагрузка на каждое колесо и шину. Все эти данные крайне важны для оценки всех качеств автомобиля: его устойчивости, плавности хода, проходимости по плохим дорогам, экономичности по расходу топлива, способности брать разгон и подъемы, развивать наибольшую скорость.

Рис. При изменении числа пассажиров или заполнении платформы грузом изменяется распределение веса по колесам.

У современных легковых автомобилей в ходовом состоянии на передние колеса приходится от 50 до 55% веса, на задние — 45—50%; с полной нагрузкой отношение меняется на обратное—45—50% и 50—55 %. У автомобилей прежних выпусков со сдвинутым назад пассажирским помещением наблюдалась заметная перегрузка задних колес в ходовом и в груженом состоянии автомобиля.

У грузовых автомобилей на передние колеса приходится 25—35% полного веса, на задние—65—75%. Собственный вес грузовых автомобилей распределяется между осями почти поровну: 40—50% на передние колеса и 50—60% на задние. Отсюда видно, что основная часть веса полезной нагрузки передается через задние колеса.

Требования к распределению веса по колесам, как увидим дальше, весьма противоречивы. Для улучшения тягозых качеств, проходимости автомобиля и для облегчения управления желательно нагрузить ведущие (задние) колеса и разгрузить направляющие (передние); для повышения устойчивости и плавности хода целесообразно равное распределение нагрузки или некоторая перегрузка передних колес. Для повышения срока службы всех шин необходима равномерная их нагрузка, которая получается при таком распределении веса по осям:

  • 50%:50% для легковых автомобилей
  • 33%:67% для грузовых (с учетом двух скатов шин на задних колесах)

Такое распределение веса следует считать наиболее приемлемым или, как говорят, оптимальным.

Рис. Складывая силы от веса отдельных частей машины, получаем силу от полного веса, приложенную в центре тяжести.

Особенно важно постоянство распределения веса по колесам (не веса, а распределения веса!), т. е. сохранение процента общего веса, приходящегося на передние или задние колеса, во всех весовых состояниях. К сожалению, большинство современных автомобилей не обладает этим качеством. Оно может быть достигнуто, если центр тяжести нагрузки находится вблизи центра тяжести автомобиля без нагрузки.

Распределение веса по колесам зависит от веса механизмов и полезной нагрузки и от их расположения по длине автомобиля (считается, что автомобиль более или менее симметричен относительно своей продольной оси и нагрузка на левые и правые колеса — одинаковая. Поэтому распределение веса на левые и правые колеса не рассматривают.). Особенно существенно последнее, так как самые главнее составляющие веса автомобиля — двигатель, кузов, полезная нагрузка — могут быть по-разному расположены по отношению к точкам опоры (т. е. к передней и задней осям) и имеют различный вес. При проектировании автомобиля вес каждого агрегата автомобиля (как и вес частей самого агрегата) можно представить в виде силы, направленной к поверхности дороги. Можно рассматривать агрегаты по-очереди, взяв их попарно, и находить для каждой пары равнодействующую; затем взять найденные равнодействующие попарно и так далее, пока не будет получена равнодействующая всех этих сил, равная по величине весу автомобиля и приложенная в точке, которую называют центром тяжести.

На практике это делается несколько иначе, с применением уравнения моментов, в котором веса всех механизмов учитываются одновременно.

До каких скоростей не дотягивают даже болиды F1?

В рейтинге представлены шесть самых быстрых автомобилей мира за всю историю автомобилестроения. Классы, масса и прочие условности опущены, потому что на таких скоростях они не имеют значения…

1. Goldenrod Land Speed Race Car

Малая родина создателей этого болида — Роберта и Уильямса Саммерс — небольшой город Онтарио в штате Калифорния (США). Конструкция, которую построили братья в 1965 году, мало походила на автомобиль, но по сути своей именно им и являлась, просто лобовая площадь этого автомобиля составляла меньше квадратного метра. Такую форму братья-изобретатели выбрали из-за наименьшего коэффициента сопротивления воздуху, конечно, насколько это возможно при установке четырех восьмицилиндровых двигателей рабочим объемом по 7 литров каждый, которые вместе выжимали 2400 лошадиных сил. Рекорд скорости на Goldenrod Land Speed Race Car рискнул установить только сам Роберт Саммерс. Он установил рекорд скорости в 658,649 км/ч.

2. ShockWave Jet Truck

Второе место в рейтинге занимает участник «Реактивного шоу — ударная волна Леса Шокли» — грузовик с турбореактивным двигателем. Создала его группа американских энтузиастов: все, как положено — три турбореактивных двигателя, огромное антикрыло. Не взлетает волшебный грузовик только благодаря особенному направлению турбин двигателей. Американцы захотели зрелища — им его показали — Peterbilt с 36 000 лошадиными силами выжимает 605 км/ч, обгоняя некоторые виды воздушных судов.

3. JCB Dieselmax

Создатель этого аппарата — Энди Грин. Руководствовался ли он при создании модели идеями Саммерсов или дошел до всего сам, но JCB Dieselmax со своим дизельным двигателем смог разогнаться до 563,418 км/ч. Корпус автомобиля выполнен из карбона, а с каждого литра рабочего объема двигателей британцы сняли сливки в виде 150 лошадок (установлено 2 пятилитровых мотора). Болид полноприводный. Объем топливного бака рекордсмена — 9 литров, а системы охлаждения — 180 литров. Да-да, героические движки слегка потеют на запредельных скоростях.

4. Oldsmobile Aerotech I Long Tail Concept

Созданный в 1987 году, он развивал скорость до 447,4 км/ч. Коэффициент аэродинамического сопротивления автомобиля — 0,22, что показательно. Отметку в 100 км/ч Oldsmobile Aerotech преодолевал за 2,5 секунды. Довольно забавно, что концепт, как выяснилось позже, побил 45 мировых рекордов скорости. «Тестировали» концепт-кар, одновременно устанавливая на мировых скоростных треках рекорды, только профессиональные гощики. Кстати, Oldsmobile Aerotech I Long Tail Concept — законодатель моды на заниженные аво. Его клиренс составлял около 2,5 сантиметров.

5. Hennessey Venom GT

Переходим к нашим современникам: Hennessey Venom GT родился в 2010 году, и снова герой с американской земли. Суперкар вышел из под рук мастеров тюнинг-ателье Hennessey Performance Engineering. «Родители» Hennessey Venom GT — Lotus Elise и мотор от Corvette ZR1. Суперкар разгоняется до 443 км/ч. Разгон до сотни засекать, видимо, не пробовали. До трех сотен Hennessey Venom GT разгоняется за 14,9 секунд. Джон Хеннесси — создатель Hennessey Venom GT — все-таки нашел способ доказать миру, что он болен скоростью.

6. Shelby Super Cars Aero II

В 2011 году Hennessey Venom GT догнал Shelby Super Cars Aero II, развив точно такую же скорость в 443 км/ч. Производитель, собственно — Shelby Super Cars — компания, выпускающая самые быстрые серийные автомобили в мире. До создания Shelby Super Cars Aero II компания потренировалась на SSC Ultimate Aero TT (412 км/ч), но Bugatti Veyron Super Sport побил этот рекорд на скорости в 431 км/ч. Желание вернуть себе звание компании с самой быстрой серийной машиной и стало предпосылкой к созданию Shelby Super Cars Aero II.

Казань — Автопортал AUTOTAT.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *